DOI QR코드

DOI QR Code

Numerical study on the impact response of SC walls under elevated temperatures

  • Lin Wang (Beihang School, Beihang University) ;
  • Weiyi Zhao (Department of Civil Engineering, Qingdao University of Technology) ;
  • Caiwei Liu (Department of Civil Engineering, Qingdao University of Technology) ;
  • Qinghong Pang (Department of Civil Engineering, Qingdao University of Technology)
  • Received : 2021.07.24
  • Accepted : 2023.01.24
  • Published : 2023.02.10

Abstract

A thermal-mechanical coupling finite element model of the steel-plate concrete composite (SC) wall is established, taking into account the strain rate effect and variation in mechanical and thermal properties under different temperatures. Verifications of the model against previous fire test and impact test results are carried out. The impact response of the SC wall under elevated temperatures is further investigated. The influences of the fire exposure time on the impact force and displacement histories are discussed. The results show that as the fire exposure time increases, the deflection increases and the impact resistance decreases. A formula is proposed to calculate the reduction of the allowable impact energy considering the fire exposure time.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant Number 52008219). The supports are gratefully acknowledged.

References

  1. Booth, P.N., Varma, A.H., Malushte, S.R. and Johnson, W.H. (2007), "Response of modular composite walls to combined thermal & mechanical load", Proceedings of the 19th International Conference on Structural Mechanics in Reactor Technology (SMiRT 19), Toronto, Canada.
  2. Booth, P.N., Varma, A.H., Sener, K.C. and Malushte, S.R. (2015), "Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading", Nucl. Eng. Des., 295, 817-828. https://doi.org/10.1016/j.nucengdes.2015.07.036.
  3. Bruhl, J.C., Varma, A.H. and Johnson, W.H. (2015a), "Design of composite SC walls to prevent perforation from missile impact", Int. J. Impact Eng., 75 (1), 75-87. https://doi.org/10.1016/j.ijimpeng.2014.07.015.
  4. Bruhl, J.C., Varma, A.H. and Kim, J.M. (2015b), "Static resistance function for steel-plate composite (SC) walls subject to impactive loading", Nucl. Eng. Des., 295, 843-859. https://doi.org/10.1016/j.nucengdes.2015.07.037.
  5. CEB-FIP Model Code (1990), Comite Euro-International du Beton, Trowbridge, Wiltshire, UK.
  6. Ding, D. (2015), Study on Fire-Resistance and Post-Fire Seismic Behavior of Steel Plate-Concrete Composite Shear Wall, South China University of Technology, Guangzhou, China.
  7. Eurocode 2 (2004), Design of Concrete Structures-Part 1-2: General Rules-Structural Fire Design, British Standards Institution; London, UK.
  8. Eurocode 4 (2005), Design of Composite Steel and Concrete Structures - Part 1.2: General Rules - Structural Fire Design, British Standards Institution; London, UK.
  9. GB50010-2010 (2015), Code for Design of Concrete Strcutrures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  10. Guo, Q. and Zhao, W. (2019a), "Displacement response analysis of steel-concrete composite panels subjected to impact loadings", Int. J. Impact Eng., 131, 272-281. https://doi.org/10.1016/j.ijimpeng.2019.05.022.
  11. Guo, Q. and Zhao, W.Y. (2019b), "Design of steel-concrete composite walls subjected to low-velocity impact", J. Constr. Steel Res., 154, 190-196. https://doi.org/10.1016/j.jcsr.2018.12.001.
  12. Hashimoto, J., Takiguchi, K., Nishimura, K., Matsuzawa, K., Tsutsui, M., Ohashi, Y., Kojima, I. and Torita, H. (2005). "Experimental study on behavior of RC panels covered with steel plates subjected to missile impact", Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18).
  13. Jin, L., Bai, J., Zhang, R., Li, L. and Du, X. (2021), "Effect of elevated temperature on thelow-velocity impact performances of reinforced concrete slabs", Int. J. Impact Eng., 149, 103797. https://doi.org/10.1016/j.ijimpeng.2020.103797.
  14. Jin, L., Zhang, R. and Du, X. (2018a), "Review on concrete and RC structures subjected to fire and impact loadings", J. Disas. Prevent. Mitigat. Eng.. 38(3), 575-590.
  15. Jin, L., Zhang, R., Li, L., Du, X. and Yao, Y. (2019), "Impact behavior of SFRC beams at elevated temperatures: Experimental and analytical studies", Eng. Struct., 197, 109401. https://doi.org/10.1016/j.engstruct.2019.109401.
  16. Jin, L., Zhang, R., Xu, J., Lan, Y. and Du, X. (2018b), "Mesoscale simulations of the impact resistance performance of rein-forced concrete beams exposed to high temperature", Scientia Sinica Technologica. 48(6), 651-661. https://doi.org/10.1360/N092017-00075
  17. Jones, N. (1989), Structural Impact, Cambridge University Press, UK.
  18. Kanda, S., Kowada, A., Akita, S., Fujita, O., Nishigaki, T., Sugita, K. and Hazama, S. (1997), "Experimental study on a concrete filled steel structure : part 12 experiment for thermal characteristics (planning of the experimental and results of heating test)", Summaries of Technical Papers of Meeting Architectural Institute of Japan B-2, Tokyo, Japan.
  19. Lie, T.T. and Denham, E.M.A. (1993), Factors Affecting the Fire Resistance of Circular Hollow Steel Columns Filled with BarReinforced Concrete NPR-CNRC Internal Report, No.651.
  20. Liew, J.Y.R., Yan, J.B. and Huang, Z.Y. (2017), "Steel-concretesteel sandwich composite structures - recent innovations", J. Constr. Steel Res., 130, 202-221. https://doi.org/10.1016/j.jcsr.2016.12.007
  21. Lu, Z. (1989), Study on Fire Response of Reinforced Concrete Beams, Tongji University, Shanghai, China.
  22. Ozaki, M., Akita, S., Takeuchi, M., Osuga, H., Nakayama, T. and Niwa, H. (2000), "Experimental study on steel plate reinforced concrete structure : part 41 heating tests (outline of experimental program and results)", Summaries of Technical Papers of Meeting Architectural Institute of Japan B-2, Tokyo, Japan.
  23. Shen, P. (2017), Experimental Studies and Finite Element Analysis on Seismic Behaviors of Concrete-Filled Steel Plate at Ambient Temperature and After Exposure to High Temperature, South China University of Technology, Guangzhou.
  24. Sohel, K.M.A. and Liew, J.Y.R. (2014), "Behavior of steel- concrete-steel sandwich slabs subject to impact load", J. Constr. Steel Res., 100, 163-175. https://doi.org/10.1016/j.jcsr.2014.04.018.
  25. UFC 3-340-02 (2008), Structures to Resist the Effects of Accidental Explosions, U.S. Department of Defense.
  26. Wei, F., Fang, C. and Wu, B. (2017), "Fire resistance of concretefilled steel plate composite (CFSPC) walls", Fire Saf. J., 88, 26-39. Fire resistance of concrete-filled steel plate composite (CFSPC) walls. https://doi.org/10.1016/j.firesaf.2016.12.008
  27. Wu, B. (2003), Post-fire Mechanical Properties of Reinforced Concrete Structures, Science Press, Beijing, China.
  28. Zhao, W., Chen, P., Liu, X. and Wang, L. (2022), "Impact response prediction and optimization of SC walls using machine learning algorithms", Structures. 45, 390-399. https://doi.org/10.1016/j.istruc.2022.09.036.
  29. Zhao, W. and Guo, Q. (2018), "Experimental study on impact and post-impact behavior of steel-concrete composite panels", ThinWall. Struct., 130, 405-413. https://doi.org/10.1016/j.tws.2018.06.012.
  30. Zhao, W., Guo, Q., Dou, X., Zhou, Y. and Ye, Y. (2018), "Impact response of steel-concrete composite panels: Experiments and FE analyses", Steel Compos. Struct., 26(3), 255-263. https://doi.org/10.12989/scs.2018.26.3.255.