DOI QR코드

DOI QR Code

Smart modified repetitive-control design for nonlinear structure with tuned mass damper

  • ZY Chen (School of Science, Guangdong University of Petrochemical Technology) ;
  • Ruei-Yuan Wang (School of Science, Guangdong University of Petrochemical Technology) ;
  • Yahui Meng (School of Science, Guangdong University of Petrochemical Technology) ;
  • Timothy Chen (California Institute of Technology)
  • 투고 : 2022.01.08
  • 심사 : 2023.01.01
  • 발행 : 2023.01.10

초록

A new intelligent adaptive control scheme was proposed that combines observer disturbance-based adaptive control and fuzzy adaptive control for a composite structure with a mass-adjustable damper. The most important advantage is that the control structures do not need to know the uncertainty limits and the interference effect is eliminated. Three adjustable parameters in LMI are used to control the gain of the 2D fuzzy control. Binary performance indices with weighted matrices are constructed to separately evaluate validation and training performance using the revalidation learning function. Determining the appropriate weight matrix balances control and learning efficiency and prevents large gains in control. It is proved that the stability of the control system can be ensured by a linear matrix theory of equality based on Lyapunov's theory. Simulation results show that the multilevel simulation approach combines accuracy with high computational efficiency. The M-TMD system, by slightly reducing critical joint load amplitudes, can significantly improve the overall response of an uncontrolled structure.

키워드

과제정보

The authors are grateful for the research grants given to Ruei Yuan Wang from the Projects of Talents Recruitment of GDUPT, Peoples R China under Grant NO. 2019rc098, and the research grants given to ZY Chen from the Projects of Talents Recruitment of GDUPT (NO. 2021rc002) in Guangdong Province, Peoples R China. as well as to the anonymous reviewers for constructive suggestions.

참고문헌

  1. Campa, G., Innocenti, M. and Nasuti, F. (1998), "Robust control of underwater vehicles: sliding mode control vs. mu synthesis", OCEANS '98 Conference Proceedings, 2, 16401644. 
  2. Chen, H. and Li, S. (2022), "Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis. Rocesses", 10(4), 656. https://doi.org/10.3390/pr10040656. 
  3. Chen, H., Liu, M., Chen, Y., Li, S. and Miao, Y. (2022), "Nonlinear lamb wave for structural incipient defect detection with sequential probabilistic ratio test", Secure. Commun. Networks, 2022. https://doi.org/10.1155/2022/9851533. 
  4. Chen, J., Tong, H., Yuan, J., Fang, Y. and Gu, R. (2022a), "Permeability prediction model modified on Kozeny-Carman for building foundation of clay soil", Buildings, 12(11), 1798. https://doi.org/10.3390/buildings12111798. 
  5. Chen, T., Khurram, S. and Cheng, C. (2019), "Prediction and control of buildings with sensor actuators of fuzzy EB algorithm", Earthq. Struct., 17(3), 307-315.  https://doi.org/10.12989/eas.2019.17.3.307
  6. Choi, B.J., Kwak, S.W. and Kim, B.K. (2020), "Design and stability analysis of single input fuzzy logic controller", Steel Compos. Struct., 30(2), 253-266. http://dx.doi.org/10.12989/scs.2020.29.2.266. 
  7. DeBitetto, P.A. (1995), "Fuzzy logic for depth control of unmanned undersea vehicles", IEEE J. Ocean. Eng., 20(3), 242-248.  https://doi.org/10.1109/48.393079
  8. Deng, E., Zhang, Z., Zhang, C., Tang, Y., Wang, W., Du, Z. and Gao, J. (2023), "Experimental study on flexural behavior of UHPC wet joint in prefabricated multi-girder bridge", Eng. Struct., 275, 115314. https://doi.org/10.1016/j.engstruct.2022.115314 
  9. Feng, Z. and Allen, R. (2004), "Reduced order H∞ control of an autonomous underwater vehicle", Control Eng. Practice, 13(4), 1511-1520.  https://doi.org/10.1016/j.conengprac.2004.02.004
  10. Fossen, T.I. (1994), Guidance and Control of Ocean Vehicles, John Wiley and Sons, 448-451. 
  11. Fu, Q., Gu, M., Yuan, J. and Lin, Y. (2022), "Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway", Buildings, 12(11), 1982. https://doi.org/10.3390/buildings12111982. 
  12. Geranmehr, B. and Nekoo, S.R. (2015), "Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the statedependent Riccati equation", Ocean Eng., 96(1), 248-257.  https://doi.org/10.1016/j.oceaneng.2014.12.032
  13. Goheen, K.R. and Jefferys, E.R. (1990), "Multivariable self-turning autopilots for autonomous underwater vehicles", IEEE J. Ocean. Eng., 15(3), 144-151.  https://doi.org/10.1109/48.107142
  14. Gu, M., Cai, X., Fu, Q., Li, H., Wang, X. and Mao, B. (2022), "Numerical analysis of passive piles under surcharge load in extensively deep soft soil", Buildings, 12(11), 1988. https://doi.org/10.3390/buildings12111988. 
  15. Guo, Y., Luo, L. and Wang, C. (2023), "Research on fault activation and its influencing factors on the barrier effect of rock mass movement induced by mining", Appl. Sci., 13(1). https://doi.org/10.3390/app13010651. 
  16. Han, Y., Wang, L. and Kang, R. (2023), "Influence of consumer preference and government subsidy on prefabricated building developer's decision-making: a three-stage game model", J. Civil Eng. Manage., 29(1), 35-49. https://doi.org/10.3846/jcem.2023.18038. 
  17. Han, Y., Xu, X., Zhao, Y., Wang, X., Chen, Z. and Liu, J. (2022a), "Impact of consumer preference on the decision-making of prefabricated building developers", J. Civil Eng. Manage., 28(3), 166-176. https://doi.org/10.3846/jcem.2022.15777. 
  18. Han, Y., Yan, X. and Piroozfar, P. (2022b), "An overall review of research on prefabricated construction supply chain management", Eng. Construct. Architect. Manag., https://doi.org/10.1108/ECAM-07-2021-0668. 
  19. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499. 
  20. Jalving, B. (1994), "The NDRE-AUV flight control system", IEEE J. Ocean. Eng., 19(4), 497-501.  https://doi.org/10.1109/48.338385
  21. Kim, D.W. (2015), "Tracking of REMUS autonomous underwater vehicles with actuator saturations", Automatica, 58(2), 15-21.  https://doi.org/10.1016/j.automatica.2015.04.029
  22. Kim, M., Joe, H., Kim, J. and Yu, S.C. (2015), "Integral sliding mode controller for precise manoeuvring of autonomous underwater vehicle in the presence of unknown environmental disturbances", Int. J. Control, 26(2), 1-11. 
  23. Lakhekar, G.V. and Waghmare, L.M. (2017), "Robust maneuvering of autonomous underwater vehicle:an adaptive fuzzy PI sliding mode control", Intel. Service Robot., 10(3), 195-212.  https://doi.org/10.1007/s11370-017-0220-2
  24. Li, J.H. and Lee, P.M. (2005), "Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle", Ocean Eng., 32(17), 2165-2181.  https://doi.org/10.1016/j.oceaneng.2005.02.012
  25. Londhe, P.S., Santhakumar, M., Patre, B.M. and Waghmare, L.M. (2017), "Task space control of an autonomous underwater vehicle manipulator system by robust single-input fuzzy logic control scheme", IEEE J. Oceanic Eng., 42(1), 13-28.  https://doi.org/10.1109/JOE.2016.2548820
  26. Mohammadi, A., Tavakoli, M., Marquez, H.J. and Hashemzadeh, F. (2013), "Nonlinear disturbance observer design for robotic manipulators", Control Eng. Practice, 21(2), 253-267.  https://doi.org/10.1016/j.conengprac.2012.10.008
  27. Moura, A., Rijo, R., Silva, P. and Crespo, S. (2010), "A multi-objective genetic algorithm applied to autonomous underwater underwater vehicles for sewage outfall plume dispersion observations", Appl. Soft Comput., 10(4), 1119-1126.  https://doi.org/10.1016/j.asoc.2010.05.009
  28. Naik, M.S. and Singh, S.N. (2007), "State-dependent Riccati equation-based robust dive plane control of AUV with control constraints", Ocean Eng., 34(11), 1711-1723.  https://doi.org/10.1016/j.oceaneng.2006.10.014
  29. Pisano, A. and Usai, E. (2004), "Output-feedback control of an underwater vehicle prototype by higher-order sliding modes", Automatica, 40(9), 1525-1531.  https://doi.org/10.1016/j.automatica.2004.03.016
  30. Prasanth Kumar, R., Dasgupta, A. and Kumar, C.S. (2007), "Robust trajectory control of underwater vehicles using time delay control law", Ocean Eng., 34(2), 842-849.  https://doi.org/10.1016/j.oceaneng.2006.04.003
  31. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679. 
  32. Santhakumar, M. and Asokan, T. (2010), "Investigations on the Hybrid Tracking Control of an Underactuated Autonomous Underwater Robot", Adv. Robot., 24(2), 15291556. 
  33. Shariat, M., Shariati, M., Madadi, A. and Wakil, K. (2018), "Computational lagrangian multiplier method by using optimization and sensitivity analysis of rectangular reinforced concrete beams", Steel Compos. Struct., 29(2), 243-256. http://dx.doi.org/10.12989/scs.2018.29.2.243. 
  34. Silvestre, C., Pascoal, A. and Kaminer, I. (2002), "On the design of gain scheduled trajectory tracking controllers", Int. J. Robust Nonlinear Control, 12(1), 797-839.  https://doi.org/10.1002/rnc.705
  35. Sun, R., Wang, J., Cheng, Q., Mao, Y. and Ochieng, W.Y. (2021), "A new IMU-aided multiple GNSS fault detection and exclusion algorithm for integrated navigation in urban environments", GPS Solutions, 25(4). https://doi.org/10.1007/s10291-021-01181-4. 
  36. Tsai, P.W., Hayat, T., Ahmad, B. and Chen, C.W. (2015), "Structural system simulation and control via NN based fuzzy model", Struct. Eng. Mech., 56(3), 385-407. https://doi.org/10.12989/sem.2015.56.3.385. 
  37. Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J. and Istanda, V. (2012), "Bat algorithm inspired algorithm for solving numerical optimization problems", Appl. Mech. Mater., 148, 134-137. https://doi.org/10.4028/www.scientific.net/AMM.148-149.134. 
  38. Varvani-Farahani, H. and Mivehchi, A. (2011), "Temperature dependence of stress-fatigue life data of FRP composites", Mech. Compos. Mater., 47(3), 185-192. https://doi.org/10.1007/s11029-011-9197-7. 
  39. Wozney, G.P. (1962), "Resonant-vibration fatigue testing", Exp. Mech., 2, 1-8. https://doi.org/10.1007/BF02325804. 
  40. Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2019), "Stochastic stability control analysis of an inclined stay cable under random and periodic support motion excitations", Smart Struct. Syst., 23(6), 641-651. https://doi.org/10.12989/sss.2019.23.6.641. 
  41. Zandi, Y. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., 28(4), 439-447. http://dx.doi.org/10.12989/scs.2018.28.4.439. 
  42. Zhang, C., Yin, Y., Yan, H., Zhu, S., Li, B., Hou, X. and Yang, Y. (2022a), "Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings", Landslides. https://doi.org/10.1007/s10346-022-01994-5. 
  43. Zhang, H., Li, L., Ma, W., Luo, Y., Li, Z. and Kuai, H. (2022b), "Effects of welding residual stresses on fatigue reliability assessment of a PC beam bridge with corrugated steel webs under dynamic vehicle loading", Structures, 45, 1561-1572. https://doi.org/10.1016/j.istruc.2022.09.094. 
  44. Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F. and Xiao, X. (2022d), "Numerical study on welding residual stress distribution of corrugated steel webs", Metals, 12(11), 1831. https://doi.org/10.3390/met12111831. 
  45. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201. 
  46. Zhang, Z., Li, W. and Yang, J. (2021), "Analysis of stochastic process to model safety risk in construction industry", J. Civil Eng. Manage., 27(2), 87-99. https://doi.org/10.3846/jcem.2021.14108. 
  47. Zhang, Z., Liang, G., Niu, Q., Wang, F., Chen, J., Zhao, B. and Ke, L. (2022c), "A Wiener degradation process with drift-based approach of determining target reliability index of concrete structures", Quality Reliability Eng. Int., 38(7), 3710-3725. https://doi.org/10.1002/qre.3168 
  48. Zhou, X., Lin, Y. and Gu, M. (2015), "Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads", Wind Struct., 20(3), 363-388. https://doi.org/10.12989/was.2015.20.3.363.