DOI QR코드

DOI QR Code

Shear behaviour of thin-walled composite cold-formed steel/PE-ECC beams

  • Ahmed M. Sheta (UniSA STEM, University of South Australia) ;
  • Xing Ma (UniSA STEM, University of South Australia) ;
  • Yan Zhuge (UniSA STEM, University of South Australia) ;
  • Mohamed A. ElGawady (Department of Civil, Architectural & Environmental Engineering Missouri University of Science and Technology) ;
  • Julie E. Mills (UniSA STEM, University of South Australia) ;
  • El-Sayed Abd-Elaal (UniSA STEM, University of South Australia)
  • Received : 2021.09.01
  • Accepted : 2023.01.02
  • Published : 2023.01.10

Abstract

The novel composite cold-formed steel (CFS)/engineered cementitious composites (ECC) beams have been recently presented. The new composite section exhibited superior structural performance as a flexural member, benefiting from the lightweight thin-walled CFS sections with improved buckling and torsional properties due to the restraints provided by thinlayered ECC. This paper investigated the shear performance of the new composite CFS/ECC section. Twenty-eight simply supported beams, with a shear span-to-depth ratio of 1.0, were assembled back-to-back and tested under a 3-point loading scheme. Bare CFS, composite CFS/ECC utilising ECC with Polyethylene fibres (PE-ECC), composite CFS/MOR, and CFS/HSC utilising high-strength mortar (MOR) and high-strength concrete (HSC) as replacements for PE-ECC were compared. Different failure modes were observed in tests: shear buckling modes in bare CFS sections, contact shear buckling modes in composite CFS/MOR and CFS/HSC sections, and shear yielding or block shear rupture in composite CFS/ECC sections. As a result, composite CFS/ECC sections showed up to 96.0% improvement in shear capacities over bare CFS, 28.0% improvement over composite CFS/MOR and 13.0% over composite CFS/HSC sections, although MOR and HSC were with higher compressive strength than PE-ECC. Finally, shear strength prediction formulae are proposed for the new composite sections after considering the contributions from the CFS and ECC components.

Keywords

References

  1. Abdel-Sayed, G. (1982), "Composite cold-formed steel-concrete beams", J. Struct. Div., 108(11), 2609-2622. https://doi.org/10.1061/JSDEAG.0006084.
  2. Ahn, H.-J. and Ryu, S.-H. (2007), "Experimental study on flexural strength of modular composite profile beams", Steel Compos. Struct., 7(1), 71-85. https://doi.org/10.12989/scs.2007.7.1.071.
  3. Ahn, H.-J. and Ryu, S.-H. (2008), "Experimental study on flexural strength of reinforced modular composite profiled beams", Steel Compos. Struct., 8(4), 313-328. http://dx.doi.org/10.12989/scs.2008.8.4.313.
  4. American Institute of Steel Construction (2016), Specification for Structural Steel Buildings, ANSI/AISC 360, American Institute of Steel Construction, Chicago, Illinois, USA.
  5. American Iron and Steel Institute (2016), North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, USA.
  6. ASTM E8 (2001), Standard Test Methods for Rnsion Testing of Metallic Materials, Annual book of ASTM standards. ASTM.
  7. Chen, M.-T. and Young, B. (2020a), "Tensile tests of cold-formed stainless steel tubes", J. Struct. Eng., 146(9), 04020165. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002738.
  8. Chen, M.-T. and Young, B. (2020b), "Tests of cold-formed normal and high strength steel tubes under tension", Thin-Wall. Struct., 153, 106844. https://doi.org/10.1016/j.tws.2020.106844.
  9. Chen, M.-T., Pandey, M. and Young, B. (2021a), "Mechanical properties of cold-formed steel semi-oval hollow sections after exposure to ISO-834 fire", Thin-Wall. Struct., 167, 108202. https://doi.org/10.1016/j.tws.2021.108202.
  10. Chen, M.-T., Pandey, M. and Young, B. (2021b), "Post-fire residual material properties of cold-formed steel elliptical hollow sections", J. Construct. Steel Res.. 183, 106723. https://doi.org/10.1016/j.jcsr.2021.106723.
  11. Chen, M.-T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020a), "Experimental investigation on cold-formed steel stiffened lipped channel columns undergoing local-distortional interaction", Thin-Wall. Struct., 150, 106682. https://doi.org/10.1016/j.tws.2020.106682.
  12. Chen, M.-T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2020b), "Uniformly bent CFS lipped channel beams experiencing local-distortional interaction: Experimental investigation", J. Construct. Steel Res., 170, 106098. https://doi.org/10.1016/j.jcsr.2020.106098
  13. Chen, M.-T., Young, B., Martins, A.D., Camotim, D. and Dinis, P.B. (2021), "Experimental investigation on cold-formed steel lipped channel beams affected by local-distortional interaction under non-uniform bending", Thin-Wall. Struct., 161, 107494. https://doi.org/10.1016/j.tws.2021.107494. concrete composite beams", Steel Compos. Struct., 14(2), 105-120. http://dx.doi.org/10.12989/scs.2013.14.2.105.
  14. Dang, Z., Feng, P., Yang, J.-Q. and Zhang, Q. (2020), "Axial compressive behavior of engineered cementitious composite confined by fiber-reinforced polymer", Compos. Struct., 243, 112191. https://doi.org/10.1016/j.compstruct.2020.112191.
  15. Development of a Novel Structural System", Int. J. Concrete Struct. Mater., 7(1), 51-59. https://doi.org/10.1007/s40069-013-0031-6.
  16. Ding, Y., Yu, J.-t., Yu, K.-Q. and Xu, S.-l. (2018), "Basic mechanical properties of ultra-high ductility cementitious composites: From 40 MPa to 120 MPa", Compos. Struct., 185, 634-645. https://doi.org/10.1016/j.compstruct.2017.11.034.
  17. Fan, W., Zhuge, Y., Ma, X., Chow, C.W.K. and Gorjian, N. (2020), "Strain hardening behaviour of PE fibre reinforced calcium aluminate cement (CAC) - Ground granulated blast furnace (GGBFS) blended mortar", Construct. Build. Mater., 241, 118100. https://doi.org/10.1016/j.conbuildmat.2020.118100.
  18. Fan, W., Zhuge, Y., Ma, X., Chow, C.W.K., Gorjian, N. and Li, D. (2022), "Retrofitting of damaged reinforced concrete pipe with CAC-GGBFS blended strain hardening cementitious composite (SHCC)", Thin-Wall. Struct., 176, 109351. https://doi.org/10.1016/j.tws.2022.109351.
  19. Hou, M., Hu, K., Yu, J., Dong, S. and Xu, S. (2018), "Experimental study on ultra-high ductility cementitious composites applied to link slabs for jointless bridge decks", Composite Structures. 204 167-177. https://doi.org/10.1016/j.compstruct.2018.07.067.
  20. Kabir, M.I., Lee, C.K., Rana, M.M. and Zhang, Y.X. (2019), "Flexural and bond-slip behaviours of engineered cementitious composites encased steel composite beams", J. Construct. Steel Res.. 157, 229-244. https://doi.org/10.1016/j.jcsr.2019.02.032.
  21. Kabir, M.I., Lee, C.K., Rana, M.M. and Zhang, Y.X. (2020a), "Flexural behaviour of ECC-LWC encased slender high strength steel composite beams", J. Construct. Steel Res., 173 106253. https://doi.org/10.1016/j.jcsr.2020.106253.
  22. Kabir, M.I., Lee, C.K., Rana, M.M. and Zhang, Y.X. (2020b), "Strength enhancement of high strength steel beams by engineered cementitious composites encasement", Eng. Structures. 207 110288. https://doi.org/10.1016/j.engstruct.2020.110288.
  23. Kang, S.-B., Tan, K.H., Zhou, X.-H. and Yang, B. (2017), "Influence of reinforcement ratio on tension stiffening of reinforced engineered cementitious composites", Eng. Struct., 141, 251-262. https://doi.org/10.1016/j.engstruct.2017.03.029.
  24. Keerthan, P. and Mahendran, M. (2010), "Experimental studies on the shear behaviour and strength of LiteSteel beams", Eng. Struct., 32(10), 3235-3247. https://doi.org/10.1016/j.engstruct.2010.06.012.
  25. Keerthan, P. and Mahendran, M. (2015), "Experimental investigation and design of lipped channel beams in shear", Thin-Wall. Struct., 86, 174-184. https://doi.org/10.1016/j.tws.2014.08.024.
  26. Li, L.-Z., Bai, Y., Yu, K.-Q., Yu, J.-T. and Lu, Z.-D. (2019), "Reinforced high-strength engineered cementitious composite (ECC) columns under eccentric compression: Experiment and theoretical model", Eng. Struct., 198, 109541. https://doi.org/10.1016/j.engstruct.2019.109541.
  27. Li, V.C. (1998), "Engineered cementitious composites tailored composites through micromechanical modeling, fiber reinforced concrete: Present and the future", CSCE. 64-97. https://hdl.handle.net/2027.42/84667.
  28. Li, V.C. (2003), "On Engineered Cementitious Composites (ECC)- A Review of the Material and Its Applications", J. Adv. Concrete Technol., 1(3), 215-230. http://hdl.handle.net/2027.42/84703. https://doi.org/10.3151/jact.1.215
  29. Li, V.C., Wu, C., Wang, S., Ogawa, A. and Saito, T. (2002), "Interface tailoring for strain-hardening polyvinyl alcoholengineered cementitious composite (PVA-ECC)", ACI Mater. J., 99(5), 463-472. https://doi.org/10.14359/12325.
  30. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2005), "Strength analysis of steel-concrete composite beams in combined bending and Shear", J. Struct. Eng., 131(10), 1593-1600. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:10(1593).
  31. LYSAGHT (2017), SUPAPURLINS SUPAZEDS & SUPACEES Design and Installation Guide for Building Professionals, LYSAGHT, Sydney, Australia.
  32. LYSAGHT (2017), ZEDS and CEES User Guide for Design and Installation Professionals, LYSAGHT, Sydney, Australia.
  33. Ma, X., Butterworth, J. and Clifton, C. (2008), "Unilateral contact buckling of lightly profiled skin sheets under compressive or shearing loads", Int. J. Solids Struct., 45(3-4), 840-849. https://doi.org/10.1016/j.ijsolstr.2007.09.006.
  34. Ma, X., Butterworth, J. and Clifton, C. (2011), "Shear buckling of infinite plates resting on tensionless elastic foundations", Europ. J. Mech. - A/Solids. 30(6), 1024-1027. https://doi.org/10.1016/j.euromechsol.2011.06.010.
  35. Mahendran, M. and Keerthan, P. (2013), "Experimental studies of the shear behavior and strength of LiteSteel beams with stiffened web openings", Eng. Struct., 49, 840-854. https://doi.org/10.1016/j.engstruct.2012.12.007.
  36. Mashiri, F.R., Zhao, X.-L. and Grundy, P. (2002), "Fatigue Tests and Design of Welded T Connections in Thin Cold-Formed Square Hollow Sections Under In-Plane Bending", J. Struct. Eng., 128(11), 1413-1422. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:11(1413).
  37. Nguyen, P. (1991), "Thin-walled, cold-formed steel composite beams", J. Struct. Eng., 117(10), 2936-2952. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(2936).
  38. Pham, C.H. and Hancock, G.J. (2013), "Experimental Investigation and Direct Strength Design of High-Strength, Complex C-Sections in Pure Bending", J. Struct. Eng., 139(11), 1842-1852. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000736.
  39. Qin, Y. and Chen, Z. (2016), "Research on cold-formed steel connections: A state-of-the-art review", Steel Compos. Struct., 20(1), 21-41. https://doi.org/10.12989/scs.2016.20.1.021
  40. Rana, M.M., Lee, C.K., Al-Deen, S. and Zhang, Y.X. (2018), "Flexural behaviour of steel composite beams encased by engineered cementitious composites", J. Construct. Steel Res., 143, 279-290. https://doi.org/10.1016/j.jcsr.2018.01.004.
  41. Sahmaran, M. and Li, V.C. (2009), "Durability properties of micro-cracked ECC containing high volumes fly ash", Cement and Concrete Research. 39(11), 1033-1043. https://doi.org/10.1016/j.cemconres.2009.07.009.
  42. Sharma, A.K. (1986), "Shear strength of steel fiber reinforced concrete beams", ACI J. Proceedings. 83(4), https://doi.org/10.14359/10559.
  43. Sheta, A., Ma, X., Zhuge, Y., ElGawady, M., Mills, J. and AbdElaal, E. (2023), " Axial compressive behaviour of thin-walled composite columns comprise high-strength cold-formed steel and PE-ECC", Thin-Wall. Struct., 184, 110471. https://doi.org/10.1016/j.tws.2022.110471.
  44. Sheta, A., Ma, X., Zhuge, Y., ElGawady, M., Mills, J. and AbdElaal, E. (2022), "Flexural strength of innovative thin-walled composite cold-formed steel/PE-ECC beams", Eng. Struct., 267, 114675. https://doi.org/10.1016/j.engstruct.2022.114675
  45. Sheta, A., Ma, X., Zhuge, Y., ElGawady, M.A., Mills, J.E., Singh, A. and Abd-Elaal, E.-S. (2021), "Structural performance of novel thin-walled composite cold-formed steel/PE-ECC beams", Thin-Wall. Struct., 162(107586). https://doi.org/10.1016/j.tws.2021.107586.
  46. Standards Australia (1997), Methods of Testing Concrete - Determination of the Static Chord Modulus of Elasticity and Poisson's Ratio of Concrete Specimens, AS 1012.17, Standards Australia, Australia.
  47. Standards Australia (1998), Steel Structures, AS 4100, Standards Australia, Australia.
  48. Standards Australia (2000), Methods of Testing Concrete Determination of Indirect Tensile Strength of Concrete Cylinders ('Brasil' or splitting test), AS 1012.10, Standards Australia, Australia.
  49. Standards Australia (2014), Methods of Testing Concrete - Compressive Strength Tests - Concrete, Mortar and Grout Specimens, AS 1012.9, Standards Australia, Australia.
  50. Standards Australia (2015), Methods of Testing Concrete - Method 8.3: Methods of Making and Curing Concrete - Mortar and Grout Specimens, AS 1012.8.3, Standards Australia, Australia.
  51. Standards Australia (2018), Cold-Formed Steel Structures, AS/NZS 4600, Standards Australia, Australia.
  52. Tam, V.W.Y., Xiao, J., Liu, S. and Chen, Z. (2019), "Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings", Front. Struct. Civil Eng., 13(3), 628-639. https://doi.org/10.1007/s11709-018-0501-7.
  53. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
  54. Valsa Ipe, T., Sharada Bai, H., Manjula Vani, K. and Zafar Iqbal Merchant, M. (2013), "Flexural behavior of cold-formed steel concrete composite beams", Steel Compos. Struct., 14(2), 105-120. http://dx.doi.org/10.12989/scs.2013.14.2.105.
  55. Wehbe, N., Bahmani, P. and Wehbe, A. (2013), "Behavior of Concrete/Cold Formed Steel Composite Beams: Experimental
  56. Wu, C. and Li, V.C. (2017), "CFRP-ECC hybrid for strengthening of the concrete structures", Compos. Struct., 178, 372-382. https://doi.org/10.1016/j.compstruct.2017.07.034.
  57. Xu, S.-L., Xu, H.-L., Huang, B.-T., Li, Q.-H., Yu, K.-Q. and Yu, J.-T. (2022), "Development of ultrahigh-strength ultrahightoughness cementitious composites (UHS-UHTCC) using polyethylene and steel fibers", Compos. Commun., 29, 100992. https://doi.org/10.1016/j.coco.2021.100992.
  58. Yu, K.-Q., Yu, J.-T., Dai, J.-G., Lu, Z.-D. and Shah, S.P. (2018), "Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers", Construct. Build. Mater., 158, 217-227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.
  59. Yu, K.-Q., Zhu, W.-J., Ding, Y., Lu, Z.-D., Yu, J.-T. and Xiao, J.-Z. (2019), "Micro-structural and mechanical properties of ultrahigh performance engineered cementitious composites (UHPECC) incorporation of recycled fine powder (RFP)", Cement Concrete Res., 124, 105813. https://doi.org/10.1016/j.cemconres.2019.105813.
  60. Yu, K., Wang, Y., Yu, J. and Xu, S. (2017), "A strain-hardening cementitious composites with the tensile capacity up to 8%", Construct. Build. Mater., 137, 410-419. https://doi.org/10.1016/j.conbuildmat.2017.01.060.
  61. Zhang, Q., Xiao, J., Zhang, P. and Zhang, K. (2019), "Mechanical behaviour of seawater sea-sand recycled coarse aggregate concrete columns under axial compressive loading", Construct. Build. Mater., 229, 117050. https://doi.org/10.1016/j.conbuildmat.2019.117050.