과제정보
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776).
참고문헌
- Rahmatalla, S. and Swan, C.C. (2003), "Continuum topology optimization of buckling-sensitive structures", AIAA J., 41(6), 1180-1189. https://doi.org/10.2514/2.2062.
- Gao, X. and Ma, H. (2014), "A new method for dealing with pseudo modes in topology optimization of continua for free vibration", Lixue Xuebao/Chinese J. Theoretical Appl. Mech., 46(6), 739-746. https://doi.org/10.6052/0459-1879-13-406.
- Gao, X. and Ma, H. (2015), "Topology optimization of continuum structures under buckling constraints", Comput. Struct., 157, 142-152. https://doi.org/10.1016/j.compstruc.2015.05.020.
- Dunning, P.D, Ovtchinnikov, E., Scott, J. and Kim, H.A. (2016), "Level-set topology optimization with many linear buckling constraints using an efficient and robust eigen solver", Int. J. Numer. Meth. Engng., 107(12), 1029-1053. https://doi.org/10.1002/nme.5203.
- Sigmund, O. and Torquato, S. (1997), "Design of materials with extreme thermal expansion using a three-phase topology optimization method", J. Mech. Phys. Solids, 45(6), 1037-1067. https://doi.org/10.1016/S0022-5096(96)00114-7.
- Doan, Q.H and Lee, D.K. (2017), "Optimum topology design of multi-material structures with non-spurious buckling constraints", Adv. Eng. Softw., 114, 110-120. https://doi.org/10.1016/j.advengsoft.2017.06.002.
- Doan, Q.H., Lee, D.K., Lee, J.H. and Kang, J.W. (2019), "Design of buckling constrained multiphase material structures using continuum topology optimization", Meccanica, 54, 1179-1201. https://doi.org/10.1007/s11012-019-01009-z.
- Olhoff, N. and Rasmussen, S.H (1977), "On single and bimodal optimum buckling loads of clamped columns", Int. J. Solids Struct., 13(7), 605-164. https://doi.org/10.1016/0020-7683(77)90043-9.
- Federico, F., Lazarov, B.S. and Sigmund, O. (2018), "Eigenvalue topology optimization via efficient multilevel solution of the frequency response", 115(7), 872-892. https://doi.org/10.1002/nme.5829.
- Federico, F. and Sigmund, O. (2019), "Revisiting topology optimization with buckling constraints", Struct Multidisc Optim, 59, 1401-1415. https://doi.org/10.1007/s00158-019-02253-3.
- Andreassen, E., Federico, F. and Sigmund, O. and Diaz, A.R. (2017), "Frequency response as a surrogate eigenvalue problem in topology optimization", Int. J. Numer. Meth. Engng, 113(8), 1214-1229. https://doi.org/10.1002/nme.5563.
- Federico, F. and Sigmund, O. and Guest, J.K. (2021), "Topology optimization with linearized buckling criteria in 250 lines of Matlab", Struct Multidisc Optim, 63, 3045-3066. https://doi.org/10.1007/s00158-021-02854-x.
- Behrou, R., Lotfi, R., Carstensen, J.V., Ferrari, F. and James K.G. (2021), "Revisiting element removal for density-based structural topology optimization with reintroduction by Heaviside projection", Comput. Meth. Appl. Mech. Eng., 380, 113799. https://doi.org/10.1016/j.cma.2021.113799.
- Townsend, S. and Kim, H.A. (2019), "A level set topology optimization method for the buckling of shell structures", Struct Multidisc. Optim., 60, 1783-1800. https://doi.org/10.1007/s00158-019-02374-9.
- Wu, C., Fang, F. and Li, Q. (2021), "Multi-material topology optimization for thermal buckling criteria", Comput Methods Appl. Mech. Eng., 346, 1136-1155. https://doi.org/10.1016/j.cma.2018.08.015.
- Banh, T.T and Lee, D.K (2019), "Topology optimization of multidirectional variable thickness thin plate with multiple materials", Struct. Multidisc. Optim., 59, 1503-152. https://doi.org/10.1007/s00158-018-2143-8.
- Banh, T.T and Lee, D.K (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. http://dx.doi.org/10.12989/scs.2020.35.1.129.
- Banh, T.T, Shin, S.M. and Lee, D.K. (2018), "Topology optimization for thin plate on elastic foundations by using multi-mateirial", Steel Compos. Struct., 27(2), 27-33. https://doi.org/10.12989/scs.2018.27.2.177.
- Banh, T.T and Lee, D.K (2018), "Multi-material topology optimization of Reissner-Mindlin plate using MICT4", Steel Compos. Struct., 27(1), 27-33. https://doi.org/10.12989/scs.2018.27.1.027.
- Picelli, R., Townsend, S., Brampton, C., Norato, J., Kim H.A (2018), "Stress-based shape and topology optimization with the level set method", Comput. Meth. Appl. Mech. Eng., 329, 1-23. https://doi.org/10.1016/j.cma.2017.09.001.
- Radhika, N.,Teja, K., Rahul, K. and Shivashankar, A. (2018), "Fabrication of Cu-Sn-Ni /SiC FGM for automotive applications: investigation of its mechanical and tribological properties", Environ. Sci. Pollut. Res., 10, 1705-1716. https://doi.org/10.1007/s12633-017-9657-3.
- Smith, J.A., Mele, E., Rimington, R.P., Capel, A.J., Lewis, M.P., Silberschmidt, V.V. and Li, S. (2019), "Polydimethylsiloxane and poly(ether) ether ketone functionally graded composites for biomedical applications", J. Mech. Behavior Biomed. Mater., 93, 130-142. https://doi.org/10.1016/j.jmbbm.2019.02.012.
- Almeida, S.R.M., Paulino, G.H. and Silva, E.C.N. (2010), "Layout and material gradation in topology optimization of functionally graded structures: A global-local approach", 42, 855-868. https://doi.org/10.1007/s00158-010-0514-x.
- Luo, Y., Li, Q. and Liu, S. (2019), "A projection-based method for topology optimization of structures with graded surfaces", Int. J. Numer. Meth. Engng., 118, 654-677.https://doi.org/10.1002/nme.6031.
- Banh, T.T, Luu G.N. and Lee, D.K. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Deng, J. and Chen, W. (2017), "Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading uncertainty", Struct. Multidisc. Optim., 56, 1-19. https://doi.org 10.1007/s00158-017-1689-1.
- Hoang, V.N., Tran, P., Vu, V.T, Nguyen, X.H. (2020), "Design of lattice structures with direct multiscale topology optimization", Compos. Struct., 252, 112718. https://doi.org/10.1016/j.compstruct.2020.112718.
- Sivanpuram, R., Dunning, P.D. and Kim, H.A. (2016), "Simultaneous material and structural optimization by multiscale topology optimization", Struct Multidisc. Optim., 54, 1267-1281. https://doi.org/10.1007/s00158-016-1519-x. Xia, L. and Breitkopf, P. (2014), "Concurrent topology
- Xia, L. and Breitkopf, P. (2016), "Recent advances on topology optimization of multiscale nonlinear structures", Arc. Comput. Meth. Eng., 24, 227-249. https://doi.org/10.1007/s11831-016-9170-7.
- Xia, L. and Breitkopf, P. (2016), “Recent advances on topology optimization of multiscale nonlinear structures”, Arc. Comput. Meth. Eng., 24, 227-249. https://doi.org/10.1007/s11831-016-9170-7.
- Singh, R., Kumar, R., Farina, I., Colangelo, F., Feo, L. and Fraternali, F. (2019), "Multi-material additive manufacturing of sustainable innovative materials and structures", Polymers, 11, 62. https://doi.org/10.3390/polym11010062.
- Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Engng., 24(2), 359-373. https://doi.org/10.1002/nme.1620240207.
- Bendsoe, M.P. and Sigmund, O. (2004), Topology Optimization. Theory, Methods, and Applications. 2nd ed., corrected printing.
- Paulino, G.H., Sutradhar, A. and Gray, J.L. (2002), “Boundary element methods for functionally graded materials”, Bound. Element., 4.
- Silva, N.C.A. and Paulino, G.H. (2004), "Topology optimization applied to the design of functionally graded material (FGM) structures", In: Proceedings of 21st international congress of theoretical and applied mechanics (ICTAM), 15-21.
- Paulino, G.H. and Silva, N.C.E. (2005), "Design of functionally graded structures using topology optimization", Mater. Sci. Forum, 492-493, 435-440. https://doi.org/10.4028/www.scientific.net/MSF.492-493.435.
- Amio, R.C.R., Vatanabe S.L. and Silva E.C.N. (2013), "Design, manufacturing and characterization of functionally graded flextensional piezoelectric actuators", J. Physics: Conference Series, 419, 012003. https://doi.org/10.1088/1742-6596/419/1/012003.
- Zhou, M. (2004), "Topology optimization for shell structures with linear buckling responses", In WCCM VI. Beijing, China. Hoang, V.N, and Xuan, H.N. (2020), "Extruded-geometriccomponent-based 3D topology optimization", Comput. Meth. Appl. Mech. Eng., 371, 113293. https://doi.org/10.1016/j.cma.2020.113293.
- Hoang, V.N, and Xuan, H.N. (2020), “Extruded-geometriccomponent-based 3D topology optimization”, Comput. Meth.Appl. Mech. Eng., 371, 113293. https://doi.org/10.1016/j.cma.2020.113293.
- Hoang, V.N, Pham T, Tangaramvong, S, Bordas, S.P.A and Xuan, H.N. (2021)," Robust adaptive topology optimization of porous infills under loading uncertainties", Struct. Multidiscip. Optimiz., 63, 2253-2266. https://doi.org/10.1007/s00158-020-02800-3.
- Hoang, V.N, Pham T, Ho, D, and Xuan, H.N. (2022), "Robust multiscale design of incompressible multi-materials under loading uncertainties", Eng. Comput., 38, 875-890. https://doi.org/10.1007/s00366-021-01372-0.
- Xuan, H.N, Liu G.R., Bordas, S., Natarajan, S. and Rabczuk, T, (2013), "An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order", Comput. Meth. Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017.
- Chau, K.N., Chau, K.N., Ngo, T., Hackl, K. and Xuan, H.N., (2018), "A polytree-based adaptive polygonal finite element method for multi-material topology optimization", Comput. Meth. Appl. Mech. Eng., 332, 712-739. https://doi.org/10.1016/j.cma.2017.07.035.