DOI QR코드

DOI QR Code

GIS-based Debris Flow Risk Assessment

GIS 기반 토석류 위험도 평가

  • 이한나 (강릉원주대학교 공간정보협동과정) ;
  • 김기홍 (강릉원주대학교 토목공학과)
  • Received : 2022.10.24
  • Accepted : 2022.11.02
  • Published : 2023.02.01

Abstract

As heavy precipitation rates have increased due to climate change, the risk of landslides has also become greater. Studies in the field of disaster risk assessment predominantly focus on evaluating intrinsic importance represented by the use or role of facilities. This work, however, focused on evaluating risks according to the external conditions of facilities, which were presented via debris flow simulation. A random walk model (RWM) was partially improved and used for the debris flow simulation. The existing RWM algorithm contained the problem of the simulation results being overly concentrated on the maximum slope line. To improve the model, the center cell height was adjusted and the inertia application method was modified. Facility information was collected from a digital topographic map layer. The risk level of each object was evaluated by combining the simulation result and the digital topographic map layer. A risk assessment technique suitable for the polygon and polyline layers was applied, respectively. Finally, by combining the evaluated risk with the attribute table of the layer, a system was prepared that could create a list of objects expected to be damaged, derive various statistics, and express the risk of each facility on a map. In short, we used an easy-to-understand simulation algorithm and proposed a technique to express detailed risk information on a map. This work will aid in the user-friendly development of a debris flow risk assessment system.

전 세계적인 기후 변화로 폭우 빈도가 증가하면서 토사 재해 위험도 또한 높아지고 있다. 토사재해 피해 예측 분야의 기존 연구들은 주로 시설물의 활용 빈도나 역할로 대변되는 내재적 중요도를 평가하는 데 주력하였다. 본 연구는 토석류 시뮬레이션을 통해 구현되는 시설물 외부 조건에 따른 위험도를 평가하는 데 초점을 두고 있다. 토석류 시뮬레이션에는 기존 Random Walk Model (RWM)을 부분 개선하여 활용하였다. 기존 알고리즘은 시뮬레이션 결과가 최대 경사선에 지나치게 집중되는 문제를 보였고, 이를 개선하기 위해 중심셀 높이에 변화를 주고 관성 적용 방법을 수정하였다. 시설물 정보는 수치지형도 Ver.2.0 레이어로부터 수집하였다. 시뮬레이션 결과와 수치지형도 레이어를 중첩하여 각 객체의 피해량을 예측하였다. 면 구조 레이어와 선 구조 레이어에 각각 적합한 예상 피해 산정 기법이 적용되었다. 마지막으로 예측된 피해량, 즉 위험도를 해당 객체의 속성정보와 결합함으로써, 피해가 예상되는 객체 목록 작성과 각종 통계 도출, 그리고 각 시설물의 위험도를 지도에 표현할 수 있는 체계를 마련하였다. 본 연구는 이해하기 쉬운 시뮬레이션 알고리즘을 사용하고 상세한 위험도 정보를 지도에 표현할 수 있는 기법을 제안하였다. 이러한 점에서 본 연구가 토석류 위험도 평가 체계를 사용자 친화적으로 발전시키는 데 도움이 될 것이라 기대한다.

Keywords

Acknowledgement

이 논문은 2022년 정부(국토교통부)의 재원으로 공간정보 융복합 핵심인재 양성사업의 지원을 받아 수행된 연구임(2019-08-02).

References

  1. Choi, H. S., Lee, C. W., Kim, K. H., Youn, H. J. and Kim, G. Y. (2013). "Developing the humanity and social risk index for landslide disasters in city." Journal of The Korean Society of Hazard Mitigation, KSHM, Vol. 13, No. 5, pp. 203-210. DOI: 10.9798/KOSHAM.2013.13.5.203 (in Korean).
  2. Dore, M. H. I. (2005). "Climate change and changes in global precipitation patterns: What do we know?." Environment International, Vol. 31, No. 8, pp. 1167-1181. DOI: 10.1016/j.envint.2005.03.004.
  3. Gamma, P. (2000). "Dfwalk-ein murgang-simulationsprogramm zur gefahrenzonierung." Geographica Bernensia, G66 (in German).
  4. Horton, P., Jaboyedoff, M., Rudaz, B. and Zimmermann, M. (2013). "Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale." Natural Hazards and Earth System Sciences, Vol. 13, No. 4, pp. 869-885. DOI: 10.5194/nhess-13-869-2013.
  5. Jenks, G. F. (1967). The data model concept in statistical mapping, International Yearbook of Cartography, pp. 186-190.
  6. Kang, H. S. and Kim, Y. T. (2017). "Parameter analysis of flow-R model for physical vulnerability assessment of debris flow disaster in regional scale." Journal of The Korean Society of Hazard Mitigation, KSHM, Vol. 17, No. 4, pp. 233-245. DOI: 10.9798/KOSHAM.2017.17.4.233 (in Korean).
  7. Kim, G. H., Won, S. Y. and Mo, S. H. (2014). "Umyeon mountain debris flow movement analysis using random walk model." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 32, No. 5, pp. 515-525. DOI: 10.7848/KSGPC.2014.32.5.515 (in Korean).
  8. Korea Meteorological Administration (KMA) (2011). Abnormal climate report (No. 11-1360000-000705-01) (in Korean).
  9. Lee, C. W., Woo, C. S. and Youn, H. J. (2011). "Analysis of debris flow hazard zone by the optimal parameters extraction of random walk model -case on debris flow area of Bonghwa county in Gyeongbuk province-." Journal of Korean Forest Society, Vol. 100, No. 4, pp. 664-671 (in Korean).
  10. Lee, H. N. and Kim, G. H. (2019). "Flow-R simulation of debris flow on Mt. woomyeon." Journal of Korean Society for Geospatial Information Science, Vol. 27, No. 6, pp. 61-71. DOI: 10.7319/kogsis.2019.27.6.061 (in Korean).
  11. Park, D. W., Lee, S. R., Nikhil, N. V., Kang, S. H. and Park, J. Y. (2013). "Debris flow hazard zonation by probabilistic analysis (Mt. Woomyeon, Seoul, Korea)." International Journal of Innovative Research in Science, Engineering and Technology, Vol. 2, No. 6, pp. 2381-2390.
  12. Park, J. W. and Kim, S. (2015). "Development of importance evaluation system for national major infrastructures using AHP method." The Journal of the Korea Contents Association, Vol. 15, No. 8, pp. 532-543. DOI: 10.5392/JKCA.2015.15.08.532 (in Korean).
  13. Park, Y. K., Kim, J. S., Jo, D. J. and Kim, S. D. (2015). "Urban mud and debris flow disaster vulnerability assessment associated with landslide hazard map: Application to Busan, Korea." Journal of The Korean Society of Hazard Mitigation, KSHM, Vol. 15, No. 5, pp. 283-289. DOI: 10.9798/KOSHAM.2015.15.5.283 (in Korean).
  14. Trenberth, K. (2011). "Changes in precipitation with climate change." Climate Research, Vol. 47, No. 1, pp. 123-138. DOI: 10.3354/cr00953.