DOI QR코드

DOI QR Code

집중형 모형 IHACRES와 GR4J를 이용한 강수 및 기온 변동성에 대한 유출 해석 민감도 평가

Assessing the Sensitivity of Runoff Projections Under Precipitation and Temperature Variability Using IHACRES and GR4J Lumped Runoff-Rainfall Models

  • 우동국 (계명대학교 공과대학 토목공학전공) ;
  • 조지현 (계명대학교 공과대학 토목공학전공) ;
  • 강부식 (단국대학교 토목환경공학과) ;
  • 이송희 (금오공과대학교 토목공학과) ;
  • 이가림 (금오공과대학교 토목공학과) ;
  • 노성진 (금오공과대학교 토목공학과)
  • 투고 : 2022.08.19
  • 심사 : 2022.11.10
  • 발행 : 2023.02.01

초록

기후변화가 고착화되면서 강수와 기온 변동으로 인한 가뭄 및 홍수 발생이 증가하고 있다. 유역 단위의 유출량 예측은 기후변화로 인한 자연재해에 대비하기 위한 수자원 관리의 시작이라 할 수 있다. 하지만, 기후변화와 유출모형의 불확실성은 정확한 유출 분석을 어렵게 한다. 본 연구에서는 이러한 불확실성을 완화하기 위하여 기후 스트레스 시나리오에 따른 두 개의 집중형 수문모형, 즉 IHACRES와 GR4J를 이용하여 강수 및 기온 변화에 따른 유출량 변화를 비교, 분석하였다. 연구 대상 지역은 합천댐과 섬진강댐 유역이며, Nash-Sutcliffe Efficiency (NSE) 및 Kling Gupta Efficiency (KGE)를 목적함수로 하여 각 모형의 매개변수를 최적화하였다. 모형의 보정과 검정은 20년(1995년-2014년)의 유출자료를 활용하였으며, 보정 및 검정 기간은 각각 7:3 비율로 설정하였다. 두 모형 모두 보정과 검정 기간에 비교적 높은 신뢰도(NSE>0.74, KGE>0.75)를 보여, 모형이 과거 사상을 재현하기에 적합하고, 모의 결과가 비교적 유사함을 확인하였다. 다음으로, 기후변동이 유출에 미치는 영향을 평가하기 위해 동일한 모의 기간에 대해 강수는 -50 %에서 +50 %의 범위를 1 %씩, 기온은 0 ℃에서 8 ℃까지 0.1 ℃씩 구분하여 총 8,181개의 기후조건 시나리오를 구축하였다. 이후, 기후 스트레스 시나리오에 따른 두 모형의 최대유량, 풍수량, 평수량을 비교 및 분석하였다. 기후 스트레스 영향을 반영한 연최대유량과 풍수량의 경우, 강수 감소에 따른 유출 패턴은 두 모형에서 비슷하였으나, 강수와 기온이 증가할수록 상이한 결과를 얻었다. 이와 반대로, 풍수량의 경우 강수와 기온 변화의 차이가 커질수록 두 모형은 유사한 결과를 얻었다. 즉, 유역의 탄력적 기후변화 대응을 위해서는 모형의 불확실성에 대한 정량적 평가가 필요하다는 것을 시사한다.

Due to climate change, drought and flood occurrences have been increasing. Accurate projections of watershed discharges are imperative to effectively manage natural disasters caused by climate change. However, climate change and hydrological model uncertainty can lead to imprecise analysis. To address this issues, we used two lumped models, IHACRES and GR4J, to compare and analyze the changes in discharges under climate stress scenarios. The Hapcheon and Seomjingang dam basins were the study site, and the Nash-Sutcliffe efficiency (NSE) and the Kling-Gupta efficiency (KGE) were used for parameter optimizations. Twenty years of discharge, precipitation, and temperature (1995-2014) data were used and divided into training and testing data sets with a 70/30 split. The accuracies of the modeled results were relatively high during the training and testing periods (NSE>0.74, KGE>0.75), indicating that both models could reproduce the previously observed discharges. To explore the impacts of climate change on modeled discharges, we developed climate stress scenarios by changing precipitation from -50 % to +50 % by 1 % and temperature from 0 ℃ to 8 ℃ by 0.1 ℃ based on two decades of weather data, which resulted in 8,181 climate stress scenarios. We analyzed the yearly maximum, abundant, and ordinary discharges projected by the two lumped models. We found that the trends of the maximum and abundant discharges modeled by IHACRES and GR4J became pronounced as changes in precipitation and temperature increased. The opposite was true for the case of ordinary water levels. Our study demonstrated that the quantitative evaluations of the model uncertainty were important to reduce the impacts of climate change on water resources.

키워드

과제정보

이 연구는 금오공과대학교 학술연구비로 지원되었음(과제 번호:202003670001).

참고문헌

  1. Brown, C., Ghile, Y., Laverty, M. and Li, K. (2012). "Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector." Water Resources Research, Vol. 48, No. 9.
  2. Brown, C., Steinschneider, S., Ray, P., Wi, S., Basdekas, L. and Yates, D. (2019). "Decision scaling (DS): Decision support for climate change." Decision making under deep uncertainty, from theory to practice, Chapter 12, Springer, Berlin, Germany, pp. 255-287.
  3. Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin, C. and Michel, C. (2022). airGR: Suite of GR hydrological models for precipitation-runoff modelling. R package version 1.7.0, Available at: https://CRAN.R-project.org/package=airGR (Accessed: July 11, 2022).
  4. Coron, L., Thirel, G., Delaigue, O., Perrin, C. and Andreassian, V. (2017). "The suite of lumped GR hydrological models in an R package." Environmental Modelling & Software, Vol. 94, pp. 166-171. https://doi.org/10.1016/j.envsoft.2017.05.002
  5. Duan, Q., Schaake, J., Andreassian, V., Franks, S., Goteti, G., Gupta, H. V., Gusev, Y. M., Habets, F., Hali, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T. and Wood, E. F. (2006). "Model parameter estimation exper iment (MOPEX): An overview of science strategy and major results from the second and third workshops." Journal of Hydrology, Vol. 320, No. 1-2, pp. 3-17. https://doi.org/10.1016/j.jhydrol.2005.07.031
  6. Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D. R., Saft, M., Seo, K. W. and Western, A. (2020). "Many commonly used rainfall-runoff models lack long, slow dynamics: Implications for runoff projections." Water Resources Research, Vol. 56, No. 5, e2019WR02528. DOI: 10.1029/2019WR025286.
  7. Fowler, K., Peel, M. C., Western, A. W., Zhang, L. and Peterson, T. J. (2016). "Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models." Water Resources Research, Vol. 52, No. 3, pp. 1820-1846. https://doi.org/10.1002/2015WR018068
  8. Her, Y. G., Yoo, S. H., Cho, J. P., Hwang, S. W., Jeong, J. H. and Seong, C. H. (2019). "Uncertainty in hydrological analysis of climate change: Multi-parameter vs. multi-GCM ensemble predictions." Scientific Report, Vol. 9, 4974. DOI: https://doi.org/10.1038/s41598-019-41334-7.
  9. Hyun, S. H., Kang, B. S. and Kim, J. G. (2016). "Improvement of mid-and-low-flow estimation using variable nonlinear catchment wetness index." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 36, No. 5, pp. 779-789. DOI: https://doi.org/10.12652/Ksce.2016.36.5.0779 (in Korean).
  10. Im, S. S., Yoo, D. G. and Kim, J. H. (2012). "Improvement of GR4J model applying soil moisture accounting process and its application in Korea basin." Journal of The Korean Society of Hazard Mitigation, KSHM, Vol. 12, No. 3, pp. 255-262 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.3.255
  11. Jakeman, A. J., Littlewood, I. G. and Whitehead, P. G. (1990). "Computation of the instantaneous unit hydrograph and identifiable component flows with applic ation to two small upland catchments." Journal of Hydrology, Vol. 117, pp. 275-300. https://doi.org/10.1016/0022-1694(90)90097-H
  12. Kim, N. W., Jung, Y. and Lee, J. E. (2013). Spatial extension of runoff data in the applications of a lumped concept model. Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 9, pp. 921-932. DOI: 10.3741/JKWRA.2013.46.9.921 (in Korean).
  13. Kim, Y. I., Seo, S. B. and Kim, Y. O. (2018). "Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 8, pp. 677-686 (in Korean). https://doi.org/10.3741/JKWRA.2018.51.8.677
  14. Kim, Y. T., Park, M. H. and Kwon, H. H. (2020). "Spatio-temporal summer rainfall pattern in 2020 from a rainfall frequency perspective." Journal of Korean Society of Disaster and Security, Vol. 13, No. 4, pp. 93-104 (in Korean). https://doi.org/10.21729/KSDS.2020.13.4.93
  15. Korea Meteorological Administration (KMA) (2020). Korean climate change assessment report 2020, Korea Meteorological Administration (in Korean).
  16. Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F. and Loumagne, C. (2005). "Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling." Journal of Hydrology, Vol. 303, No. 1-4, pp. 290-306. https://doi.org/10.1016/j.jhydrol.2004.08.026
  17. Oudin, L., Moulin, L., Bendjoudi, H. and Ribstein, P. (2010). "Estimating potential evapotranspiration without continuous daily data: Possible errors and impact on water balance simulations." Hydrological Sciences Journal, Vol. 55, No. 2, pp. 209-222. https://doi.org/10.1080/02626660903546118
  18. Park, Y. H. and Yoo, C. S. (2008). "Evaluation of stream flow data observed in the Pyungchang river basin using the IHACRES Model." Journal of Korean Society of Disaster and Security, Vol. 8, No. 4, pp. 123-133 (in Korean).
  19. Perrin, C., Michel, C. and Andreassian, V. (2003). "Improvement of a parsimonious model for streamflow simulation." Journal of Hydrology, Vol. 279, No. 1-4, pp. 275-289. https://doi.org/10.1016/S0022-1694(03)00225-7
  20. Seiller, G. and Anctil, F. (2014). "Climate change impacts on the hydrologic regime of a Canadian river: Comparing uncertainties arising from climate natural variability and lumped hydrological model structures." Hydrology and Earth System Sciences, Vol. 18, No. 6, pp. 2033-2047. DOI: 10.5194/hess-18-2033-2014 (in Korean).
  21. Shim, E. J., Uranchimeg, S., Lee, Y. R., Moon, Y. I., Lee, J. H. and Kwon, H. H. (2021). "A correlation analysis between state variables of rainfall-runoff model and hydrometeorological variables." Journal of Korea Water Resources Association, KWRA, Vol. 54, No. 12, pp. 1295-1304. DOI: 10.3741/JKWRA.2021.54.12.1295 (in Korean).
  22. Yoo, C. S. and Park, Y. H. (2006). "A study of the IHACRES model's parameters regionalization for discharge computation on ungaged catchment." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1792-1796 (in Korean).
  23. Yu, J. U., Park, M. H., Kim, J. G. and Kwon, H. H. (2021). "Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model." Journal of Korea Water Resources Association, KWRA, Vol. 54, No. 2, pp. 105-119 (in Korean). https://doi.org/10.3741/JKWRA.2021.54.2.105