DOI QR코드

DOI QR Code

Effects of arbuscular mycorrhizal fungi on enhancing growth, fruit quality, and functional substances in tomato fruits (Lycopersicon esculentum Mill.)

  • Thanapat Suebrasri (Faculty of Allied Health Sciences, Nakhon Ratchasima College) ;
  • Wasan Seemakram (Department of Microbiology, Faculty of Science, Khon Kaen University) ;
  • Chanon Lapjit (Department of Horticulture, Faculty of Agriculture, Khon Kaen University) ;
  • Wiyada Mongkolthanaruk (Department of Microbiology, Faculty of Science, Khon Kaen University) ;
  • Sophon Boonlue (Department of Microbiology, Faculty of Science, Khon Kaen University)
  • Received : 2023.10.04
  • Accepted : 2023.10.21
  • Published : 2023.12.11

Abstract

This study aimed to investigate the efficiency of arbuscular mycorrhizal fungi (AMF) in enhancing plant performance and bioactive compound concentrations in tomatoes (Lycopersicon esculentum Mill.). This factorial pot experiment included nine replications over 120 days of cultivation. Three AMF species (Rhizophagus prolifer, Claroideoglomus etunicatum, and Acaulospora mellea) were utilized as inoculum, while non-mycorrhizal controls with or without synthetic NPK fertilizer were compared. Interestingly, C. etunicatum KS-02 inoculations effectuated the best fruit growth and weight, which were statistically higher than those of the control without AMF. However, only fruit fresh weight was higher in plants inoculated with C. etunicatum KS-02 than those treated with the synthetic NPK fertilizer. In addition, C. etunicatum KS-02 inoculations induced a ≥ 11% increase in DDPH (1,1-diphenyl-2-picrylhydrazyl) activity, lycopene content, and carotenoid content compared to the control. This study is the first to report Claroideoglomus species' effectiveness in promoting growth, fruit yield, and bioactive compound production in L. esculentum Mill. These findings substantiate the significant potential of C. etunicatum KS-02 for tomato cultivation without the adverse effects of excessive synthetic fertilizer use.

Keywords

Acknowledgement

This research was supported by the Fundamental Fund of Khon Kaen University in FY 2022, grant no. FRB650032/0161, through the research on growth enhancement and carotenoid accumulation in tomato fruit by arbuscular mycorrhizal fungi by Khon Kaen University, Department of Microbiology, Faculty of Science, which received funding support from the National Science, Research and Innovation Fund (NSRF).

References

  1. Alam MZ, Choudhury TR, Mridha MAU (2023) Arbuscular mycorrhizal fungi enhance biomass growth, mineral content, and antioxidant activity in tomato plants under drought stress. J Food Qual 2023:2581608. https://doi.org/10.1155/2023/2581608
  2. Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: The plant of the thousand and one molecules. Front Plant Sci 7:19. https://doi.org/10.3389/fpls.2016.00019
  3. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1-15. http://doi.org/10.1104/pp.24.1.1
  4. Avio L, Sbrana C, Giovannetti M, Frassinetti S (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci Hortic 224:265-271. https://doi.org/10.1016/j.scienta.2017.06.02210.1016/j.scienta.2017.06.022
  5. Biswas AK, Sahoo J, Chatli MK (2011) A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT - Food Sci Technol 44: 1809-1813 https://doi.org/10.1016/j.lwt.2011.03.017
  6. Boonlue S, Surapat W, Pukahuta C, Suwanarit P, Suwanarit A, Morinaga T (2012) Diversity and efficiency arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens L.) farms. Mycoscience 53:10-16 https://doi.org/10.1007/s10267-011-0131-6
  7. Chandini, Kumar R, Kumar R, Prakash O (2019) The impact of chemical fertilizers on our environment and ecosystem. In: Research Trends in Environmental Sciences (2nd ed.). New Delhi, India (pp 71-86)
  8. Daniels BA, Skipper HD (1982) Method for the recovery and quantitative estimation of propagules from soil. In: Schenck, N.C. (Ed.), Method and Principle of Mycorrhizal Research. Am. Phytopathol. Soc., St. Paul Minnesota, USA (pp 29-36)
  9. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203-217 https://doi.org/10.1007/s00572-011-0392-0
  10. Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216(1):148-54 https://doi.org/10.1007/s00425-002-0917-z
  11. Heldt HW (2003) Pflanzenbiochemie. 3. Auflage. Spektrum Akademischer Verlag, Heidelberg. p 622
  12. Khaekhum S, Lumyong S, Kuyper TW, Boonlue S (2017) Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season. Curr Res Environ Appl Mycol 7(4): 282-292. https://doi.org/10.5943/cream/7/4/5
  13. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486-505. https://doi.org/10.1016/S0953-7562(89)80195-9
  14. Lahoz I, Perez-de-Castro A, Valcarcel M, Macua JI, Beltran J, Rosello S, Cebolla-Cornejo J (2016) Effect of water deficit on the agronomical performance and quality of processing tomato. Scientia Horticulturae 200:55-65. https://doi.org/10.1016/j.scienta.2015.12.051
  15. Leong LP, Shui G (2002) An Investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69-75. https://doi.org/10.1016/S0308-8146(01)00251-5
  16. Mutumba FA, Zagal E, Gerding M, Castillo-Rosales D, Paulino L, Schoebitz M (2018) Plant growth promoting rhizobacteria for improved water stress tolerance in wheat genotypes. J Soil Sci Plant Nutr 18(4):1080-1096. https://doi.org/10.4067/S0718-95162018005003003
  17. Nacoon S, Ekprasert J, Riddech N, Mongkolthanaruk W, Jogloy S, Vorasoot N, Cooper J, Boonlue S (2021) Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere 17:100308. https://doi.org/10.1016/j.rhisph.2021.100308
  18. Nacoon S, Seemakram W, Ekprasert J, Theerakulpisut P, Sanitchon J, Kuyper TW, Boonlue S (2023) Arbuscular mycorrhizal fungi enhance growth and increase concentrations of anthocyanin, phenolic compounds, and antioxidant activity of Black Rice (Oryza sativa L.). Soil Syst 7:44. https://doi.org/10.3390/soilsystems7020044
  19. Nguyen ML, Schwartz SJ (1999) Lycopene: chemical and biological properties. Food Technol 53:38-45
  20. Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5(10):1108-1116
  21. Pataro G, Carullo D, Falcone M, Ferrari G (2020) Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov Food Sci Emerg Technol 63. https://doi.org/10.1016/j.ifset.2020.102369
  22. Salam EA, Alatar A, El-Sheikh MA (2017) Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci 25:1772-1780. https://doi.org/10.1016/j.sjbs.2017.10.015
  23. Seemakram W, Paluka J, Suebrasri T, Lapjit C, Kanokmedhakul S, Kuyper TW, Ekprasert J, Boonlue S (2022) Enhancement of growth and Cannabinoids content of hemp (Cannabis sativa) using arbuscular mycorrhizal fungi. Front Plant Sci 13: 845794.https://doi.org/10.3389/fpls.2022.845794
  24. Seemakram W, Suebrasri T, Khaekhum S, Ekprasert J, Aimi A, Boonlue S (2021) Growth enhancement of the highly prized tropical trees siamese rosewood and burma padauk. Rhizosphere 19:100363. https://doi.org/10.1016/j.rhisph.2021.100363
  25. Taber HG (2006) Potassium application and leaf sufficiency level for fresh-market tomatoes on a Midwestern United States fine-textured soil. HortTechnology 16:247-252 https://doi.org/10.21273/HORTTECH.16.2.0247
  26. Ulrichs C, Fischer G, Buttner C, Mewis I (2008) Comparison of lycopene, b-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). Agron Colomb 26(1): 40-46
  27. Wang Y, Zhang W, Liu W, Ahammed GJ, Wen W, Guo S, Sun J (2021) Auxin is involved in arbuscular mycorrhizal fungi-promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biology 21(1): doi:10.1186/s12870-020-02817-2
  28. Zhao YY, Cartabia A, Lalaymia I, Declerck S (2022) Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 32:221-256 https://doi.org/10.1007/s00572-022-01079-0
  29. Ziane H, Meddad-Hamza A, Beddiar A, Gianinazzi S (2017) Effects of arbuscular mycorrhizal fungi and fertilization levels on industrial tomato growth and production. Int J Agric Biol 19:341-347. https://doi.org/10.17957/IJAB/15.0287