DOI QR코드

DOI QR Code

탈리 신호전달의 메커니즘에 대한 최신 연구동향 및 미래 농업의 적용 방안

Plant abscission: An age-old yet ongoing challenge in future agriculture

  • 이진수 (서울대학교 기초과학연구원)
  • Jinsu Lee (Research Institute of Basic Sciences, Seoul National University)
  • 투고 : 2023.08.02
  • 심사 : 2023.08.04
  • 발행 : 2023.08.29

초록

식물의 탈리(abscission)는 기관 혹은 조직이 분리되는 현상으로, 필요 없어진 기관을 떨어트리거나 종자와 과실을 널리 퍼트리기 위해 자연이 선택해온 전략이다. 하지만 농업적 관점에서 이러한 종자나 과실의 탈리는 작물의 생산성과 상품의 품질을 떨어트리는 주요 요인이 될 수 있다. 때문에 전통 농업의 작물화 과정을 통해 탈리가 저해된 돌연변이들이 선택되어 교배되면서 자연적으로 익은 과일이나 종자를 떨어트리지 않는 현대의 벼, 토마토, 유채, 콩과 같은 주요 작물 품종을 얻을 수 있었다. 한 세기 가량 진행된 quantitative trait loci (QTLs) 연구 및 애기장대에서의 유전학적・분자생물학적 연구를 통해 탈리 활성에 관여하는 다양한 세포생물학적 메커니즘과 신호전달 경로 및 전사조절인자가 규명되었다. 뿐만 아니라, 식물 생장에 관여하는 다양한 호르몬 신호전달 역시 탈리 활성을 조절하는 데에 중요함이 밝혀졌으며, 이들 호르몬과 신호전달에 작용하는 여러 케미칼 처리제가 개발되어 작물의 수확량을 증대시키는데 사용되어왔다. 본 리뷰에선 최근까지 밝혀진 탈리 활성에 관여하는 신호전달과 주요 조절인자에 대해 소개하고, smart farm 시대의 미래농업에 적용되어야할 작물의 탈리 조절 메커니즘 연구가 무엇일지, 또 이를 위해 모델시스템에서 앞으로 더 연구되어야 할 것이 무엇인지에 대해 논의하고자 한다.

Plant abscission is a natural process in which plant organs or tissues undergo detachment, a strategy selected by nature for the disposal of nonessential organs and widespread dissemination of seeds and fruits. However, from an agricultural perspective, the abscission of seeds or fruits represents a major factor that reduces crop productivity and product quality. Therefore, during the crop domestication process in traditional agriculture, mutants exhibiting suppressed abscission were selected and crossbred, thereby enabling the production of modern crop varieties such as rice, tomatoes, canola, and soybeans. These crops possess a unique trait of retaining ripe fruits or seeds in contrast to disposal via abscission. During the previous century, research on quantitative trait loci along with genetic and molecular biological studies on Arabidopsis thaliana have elucidated various cell biological mechanisms, signaling pathways, and transcription regulators involved in abscission. Additionally, it has been revealed that various hormone signals, which are involved in plant growth, play crucial roles in modulating abscission activity. Researchers have developed several chemical treatments that target these hormones and signal transduction pathways to enhance crop yields. This review aimed to introduce the previously identified signal transduction pathways and pivotal regulators implicated in abscission activity. Moreover, this review will discuss the future direction of research required to investigate crop abscission mechanisms for their potential application in smart farming and other areas of agriculture, as well as areas within model systems that require extensive research.

키워드

과제정보

이 논문은 서경배 과학재단(Suh Kyungbae Foundation (SUHF19010003)) 과 대한민국 정부(MEST)의 재원으로 한국연구재단(National Research Foundation of Korea (NRF-2019R1A6A1A10073437)의 지원을 받아 수행된 기초연구사업임.

참고문헌

  1. Aalen RB, Wildhagen M, Sto IM, Butenko MA (2013) IDA: a peptide ligand regulating cell separation processes in Arabidopsis. J Exp Bot 64(17):5253-5261. doi:10.1093/jxb/ert338
  2. Addicott F, Lynch R, Carns H (1955) Auxin gradient theory of abscission regulation. Science 121(3148):644-645 https://doi.org/10.1126/science.121.3148.644
  3. Addicott FT (1982) Abscission. Univ of California Press.
  4. Addicott FT, Lyon JL (1969) Physiology of abscisic acid and related substances. Annual review of plant physiology 20(1):139-164
  5. Alferez F, Zhong GY, Burns JK (2007) Citrus abscission agent induces anoxia- and senescence-related gene expression in Arabidopsis. J Exp Bot 58(10):2451-2462. doi:10.1093/jxb/erm111
  6. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis. Science 284(5423):2148-2152. doi:10.1126/science.284.5423.2148
  7. Anthony MF, Coggins Jr CW (1999) The efficacy of five forms of 2, 4-D in controlling preharvest fruit drop in citrus. Scientia Horticulturae 81(3):267-277
  8. Arnaud N, Lawrenson T, Ostergaard L, Sablowski R (2011) The same regulatory point mutation changed seed-dispersal structures in evolution and domestication. Current Biology 21(14):1215-1219 https://doi.org/10.1016/j.cub.2011.06.008
  9. Bac CW, van Henten EJ, Hemming J, Edan Y (2014) Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robotics 31(6):888-911. doi:10.1002/rob.21525
  10. Bar-Dror T, Dermastia M, Kladnik A, Znidaric MT, Novak MP, Meir S, Burd S, Philosoph-Hadas S, Ori N, Sonego L (2011) Programmed cell death occurs asymmetrically during abscission in tomato. The Plant Cell 23(11):4146-4163 https://doi.org/10.1105/tpc.111.092494
  11. Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 115(7):1053-1074. doi:10.1093/aob/mcv046
  12. Biggs A, Northover J (1985) Formation of the primary protective layer and phellogen after leaf abscission in peach. Canadian journal of botany 63(9):1547-1550 https://doi.org/10.1139/b85-214
  13. Blanusa T, Else MA, Atkinson CJ, Davies WJ (2005) The regulation of sweet cherry fruit abscission by polar auxin transport. Plant growth regulation 45:189-198 https://doi.org/10.1007/s10725-005-3568-9
  14. Bleecker AB, Patterson SE (1997) Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant Cell 9(7):1169
  15. Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, Zermiani M, Moscatello S, Battistelli A, Velasco R, Ruperti B (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant physiology 155(1):185-208 https://doi.org/10.1104/pp.110.165779
  16. Botton A, Ruperti B (2019) The yes and no of the ethylene involvement in abscission. Plants (Basel) 8(6):187. doi:10.3390/plants8060187
  17. Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ (2011) CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant physiology 156(4):1837-1850 https://doi.org/10.1104/pp.111.175224
  18. Butenko MA, Shi C-L, Aalen RB (2012) KNAT1, KNAT2 and KNAT6 act downstream in the IDA-HAE/HSL2 signaling pathway to regulate floral organ abscission. Plant signaling & behavior 7(1):135-138
  19. Butler L (1936) Inherited characters in the tomato II-Joint pedicel. J Hered 27:25-26
  20. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3(1):1-30
  21. Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. The Plant Journal 68(1):168-185 https://doi.org/10.1111/j.1365-313X.2011.04677.x
  22. Cho SK, Larue CT, Chevalier D, Wang H, Jinn T-L, Zhang S, Walker JC (2008) Regulation of floral organ abscission in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 105(40):15629-15634 https://doi.org/10.1073/pnas.0805539105
  23. CLARKE JM (1981) Effect of delayed harvest on shattering losses in oats, barley and wheat. Canadian Journal of Plant Science 61(1):25-28 https://doi.org/10.4141/cjps81-004
  24. Cracker LE, Abeles FB (1969) Abscission: role of abscisic acid. Plant Physiol 44(8):1144-1149. doi:10.1104/pp.44.8.1144
  25. Dal Cin V, Danesin M, Boschetti A, Dorigoni A, Ramina A (2005) Ethylene biosynthesis and perception in apple fruitlet abscission (Malus domestica L. Borck). J Exp Bot 56(421):2995-3005. doi:10.1093/jxb/eri296
  26. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309-1321 https://doi.org/10.1016/j.cell.2006.12.006
  27. Dong X, Ma C, Xu T, Reid MS, Jiang C-Z, Li T (2021) Auxin response and transport during induction of pedicel abscission in tomato. Horticulture research 8
  28. Dong Y, Wang Y-Z (2015) Seed shattering: from models to crops. Frontiers in Plant Science 6:476
  29. Eccher G, Begheldo M, Boschetti A, Ruperti B, Botton A (2015) Roles of ethylene production and ethylene receptor expression in regulating apple fruitlet abscission. Plant Physiol 169(1): 125-137. doi:10.1104/pp.15.00358
  30. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana
  31. Estornell LH, Agusti J, Merelo P, Talon M, Tadeo FR (2013) Elucidating mechanisms underlying organ abscission. Plant Science 199:48-60 https://doi.org/10.1016/j.plantsci.2012.10.008
  32. Gao Y, Liu Y, Liang Y, Lu J, Jiang C, Fei Z, Jiang CZ, Ma C, Gao J (2019) Rosa hybrida Rh ERF 1 and Rh ERF 4 mediate ethylene-and auxin-regulated petal abscission by influencing pectin degradation. The Plant Journal 99(6):1159-1171 https://doi.org/10.1111/tpj.14412
  33. Geng R, Shan Y, Li L, Shi C-L, Wang J, Zhang W, Sarwar R, Xue Y-X, Li Y-L, Zhu K-M (2022) The trifecta of disease avoidance, silique shattering resistance and flowering period elongation achieved by the BnaIDA editing in Brassica napus. bioRxiv:2022.2006.2009.493885
  34. Gomez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water-stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant physiology 112(1):401-408 https://doi.org/10.1104/pp.112.1.401
  35. Goren R (2008) Plant cell separation and adhesion. Annual Plant Reviews, Volume 25. Oxford University Press
  36. Goto K, Yabuta S, Tamaru S, Ssenyonga P, Emanuel B, Katsuhama N, Sakagami J-I (2022) Root hypoxia causes oxidative damage on photosynthetic apparatus and interacts with light stress to trigger abscission of lower position leaves in Capsicum. Scientia Horticulturae 305:111337
  37. Greenberg J, Goren R, Riov J (1975) The role of cellulase and polygalacturonase in abscission of young and mature Shamouti orange fruits. Physiologia Plantarum 34(1):1-7  https://doi.org/10.1111/j.1399-3054.1975.tb01845.x
  38. Greer DH, Weston C (2010) Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Functional plant biology : FPB 37(3):206-214. doi:10.1071/FP09209
  39. Groszmann M, Paicu T, Alvarez JP, Swain SM, Smyth DR (2011) SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. The Plant Journal 68(5):816-829 https://doi.org/10.1111/j.1365-313X.2011.04732.x
  40. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509-1517 https://doi.org/10.1242/dev.125.8.1509
  41. Gulluoglu L, Arioglu H, Arslan M (2006) Effects of some plant growth regulators and nutrient complexes on pod shattering and yield losses of soybean under hot and dry conditions. Asian Journal of Plant Sciences
  42. Hagemann MH, Winterhagen P, Hegele M, Wunsche JN (2015) Ethephon induced abscission in mango: physiological fruitlet responses. Frontiers in Plant Science 6:706
  43. Hepworth SR, Pautot VA (2015) Beyond the divide: Boundaries for patterning and stem cell regulation in plants. Front Plant Sci 6:1052-1052. doi:10.3389/fpls.2015.01052
  44. Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. The Plant Cell 17(5):1434-1448 https://doi.org/10.1105/tpc.104.030536
  45. Hohmann U, Santiago J, Nicolet J, Olsson V, Spiga FM, Hothorn LA, Butenko MA, Hothorn M (2018) Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family coreceptors. Proc Natl Acad Sci USA 115(13):3488-3493. doi:10.1073/pnas.1714972115
  46. Hong S-B, Sexton R, Tucker ML (2000) Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiology 123(3):869-882
  47. Hu G, Fan J, Xian Z, Huang W, Lin D, Li Z (2014) Overexpression of SlREV alters the develop ment of the flower p edicel abscission zone and fruit formation in tomato. Plant Science 229:86-95 https://doi.org/10.1016/j.plantsci.2014.08.010
  48. Huberman M, Goren R (1979) Exo-and endo-cellular cellulase and polygalacturonase in abscission zones of developing orange fruits. Physiologia Plantarum 45(2):189-196 https://doi.org/10.1111/j.1399-3054.1979.tb01685.x
  49. Huberman M, Riov J, Aloni B, Goren R (1997) Role of ethylene biosynthesis and auxin content and transport in high temperature-induced abscission of pepper reproductive organs. Journal of plant growth regulation 16(3):129-135. doi:10.1007/PL00006986
  50. Ito Y, Nakano T (2015) Development and regulation of pedicel abscission in tomato. Frontiers in Plant Science 6:442
  51. Jacobs WP (1968) Hormonal regulation of leaf abscission. Plant Physiology 43(9 Pt B):1480
  52. Jiang C-Z, Lu F, Imsabai W, Meir S, Reid MS (2008) Silencing polygalacturonase expression inhibits tomato petiole abscission. Journal of Experimental Botany 59(4):973-979
  53. Jinn T-L, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & development 14(1):108-117
  54. Jordan WR, Morgan PW, Davenport TL (1972) Water stress enhances ethylene-mediated leaf abscission in cotton. Plant Physiology 50(6):756-758 https://doi.org/10.1104/pp.50.6.756
  55. Khan M, Xu H, Hepworth SR (2014) BLADE-ON-PETIOLE genes: setting boundaries in development and defense. Plant Science 215:157-171 https://doi.org/10.1016/j.plantsci.2013.10.019
  56. Kim J, Dotson B, Rey C, Lindsey J, Bleecker AB, Binder BM, Patterson SE (2013) New clothes for the jasmonic acid receptor COI1: delayed abscission, meristem arrest and apical dominance. PloS one 8(4):e60505
  57. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312(5778):1392-1396 https://doi.org/10.1126/science.1126410
  58. Konsens I, Ofir M, Kigel J (1991) effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Annals of botany 67(5):391-399. doi:10.1093/oxfordjournals.aob.a088173
  59. Kucko A, Wilmowicz E, Ostrowski M (2019) Spatio-temporal IAA gradient is determined by interactions with ET and governs flower abscission. J Plant Physiol 236:51-60. doi:10.1016/j.jplph.2019.02.014
  60. Kumpf RP, Shi C-L, Larrieu A, Sto IM, Butenko MA, Peret B, Riiser ES, Bennett MJ, Aalen RB (2013) Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc Natl Acad Sci USA 110(13):5235-5240. doi:10.1073/pnas.1210835110
  61. Kwack Y-B, Kim HL, Chae W-B, Lee JH, Lee EH, Kim JG, Lee YB (2013) Regrowth of buds and flower bud formation in kiwifruit as affected by early defoliation. Korean Journal of Environmental Agriculture 32(3):201-206
  62. La Rue CD (1936) The effect of auxin on the abscission of petioles. Proceedings of the National Academy of Sciences 22(5):254-259 https://doi.org/10.1073/pnas.22.5.254
  63. Langowski L, Goni O, Quille P, Stephenson P, Carmody N, Feeney E, Barton D, Ostergaard L, O'Connell S (2019) A plant biostimulant from the seaweed Ascophyllum nodosum (Sealicit) reduces podshatter and yield loss in oilseed rape through modulation of IND expression. Sci Rep 9(1):16644-16611. doi:10.1038/s41598-019-52958-0
  64. LeClere S, Schmelz EA, Chourey PS (2010) Sugar Levels Regulate Tryptophan-Dependent Auxin Biosynthesis in Developing Maize Kernels. Plant Physiol 153(1):306-318. doi:10.1104/pp.110.155226
  65. Lee J, Chen H, Lee G, Emonet A, Kim SG, Shim D, Lee Y (2022) MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. New Phytol 235(6):2466-2480. doi:10.1111/nph.18303
  66. Lee Y, Yoon TH, Lee J, Jeon SY, Lee JH, Lee MK, Chen H, Yun J, Oh SY, Wen X (2018) A lignin molecular brace controls precision processing of cell walls critical for surface integrity in Arabidopsis. Cell 173(6):1468-1480. e1469 https://doi.org/10.1016/j.cell.2018.03.060
  67. Leslie ME, Lewis MW, Youn J-Y, Daniels MJ, Liljegren SJ (2010) The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis. Development 137(3):467-476 https://doi.org/10.1242/dev.041335
  68. Lewis MW, Leslie ME, Fulcher EH, Darnielle L, Healy PN, Youn JY, Liljegren SJ (2010) The SERK1 receptor-like kinase regulates organ separation in Arabidopsis flowers. The Plant Journal 62(5):817-828 https://doi.org/10.1111/j.1365-313X.2010.04194.x
  69. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936-1939 https://doi.org/10.1126/science.1123604
  70. Li F, Komatsu A, Ohtake M, Eun H, Shimizu A, Kato H (2020) Direct identification of a mutation in OsSh1 causing non-shattering in a rice (Oryza sativa L.) mutant cultivar using whole-genome resequencing. Scientific Reports 10(1):14936
  71. Liao W, Wang G, Li Y, Wang B, Zhang P, Peng M (2016) Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava. Sci Rep 6(1):21542-21542. doi:10.1038/srep21542
  72. Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766-770 https://doi.org/10.1038/35008089
  73. Liljegren SJ, Roeder AH, Kempin SA, Gremski K, Ostergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116(6):843-853 https://doi.org/10.1016/S0092-8674(04)00217-X
  74. Lin Z, Li X, Shannon LM, Yeh C-T, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE (2012) Parallel domestication of the Shattering1 genes in cereals. Nature genetics 44(6):720-724 https://doi.org/10.1038/ng.2281
  75. Louie Jr D, Addicott F (1970) Applied auxin gradients and abscission in explants. Plant Physiology 45(6):654
  76. Lu L, Arif S, Yu JM, Lee JW, Park Y-H, Tucker ML, Kim J (2023) Involvement of IDA-HAE module in natural development of tomato flower abscission. Plants 12(1):185
  77. Mao L, Begum D, Chuang H-w, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscissionzone development. Nature 406(6798):910-913 https://doi.org/10.1038/35022611
  78. McKim SM, Stenvik G-E, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, Haughn GW (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis
  79. Mehmood MZ, Qadir G, Afzal O, Din AMU, Raza MA, Khan I, Hassan MJ, Awan SA, Ahmad S, Ansar M, Aslam MA, Ahmed M (2021) Paclobutrazol improves sesame yield by increasing dry matter accumulation and reducing seed shattering under rainfed conditions. International journal of plant production 15(3):337-349. doi:10.1007/s42106-021-00132-w
  80. Meier U (1997) Growth stages of mono-and dicotyledonous plants= Entwicklungsstadien mono-und dikotyler Pflanzen=Estadios de las plantas mono-y dicotiledoneas= Stades phenologiques des mono-et dicotyledones cultivees. Berlin [etc.]: Blackwell
  81. Meir S, Philosoph-Hadas S, Riov J, Tucker ML, Patterson SE, Roberts JA (2019) Re-evaluation of the ethylene-dependent and-independent pathways in the regulation of floral and organ abscission. Journal of experimental botany 70(5):1461-1467 https://doi.org/10.1093/jxb/erz038
  82. Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KV, Burd S, Ophir R, Kochanek B, Reid MS, Jiang C-Z, Lers A (2010) Microarray analysis of the abscission-related transcriptome in the tomato flower abscission zone in response to auxin depletion. Plant Physiology 154(4):1929-1956 https://doi.org/10.1104/pp.110.160697
  83. Meng X, Zhou J, Tang J, Li B, de Oliveira MV, Chai J, He P, Shan L (2016) Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis. Cell reports 14(6):1330-1338 https://doi.org/10.1016/j.celrep.2016.01.023
  84. Mesejo C, Marzal A, Martinez-Fuentes A, Reig C, Agusti M (2021) On how auxin, ethylene and IDA-peptide relate during mature Citrus fruit abscission. Scientia horticulturae 278:109855. doi:10.1016/j.scienta.2020.109855
  85. Moline HE, Bostrack JM (1972) Abscission of leaves and leaflets in Acer negundo and Fraxinus americana. American Journal of Botany 59(1):83-88
  86. Monterroso VA, Wien HC (1990) Flower and pod abscission due to heat stress in beans. Journal of the American Society for Horticultural Science 115(4):631-634. doi:10.21273/JASHS.115.4.631
  87. Najeeb U, Atwell BJ, Bange MP, Tan DK (2015) Aminoethoxyvinylglycine (AVG) ameliorates waterlogging-induced damage in cotton by inhibiting ethylene synthesis and sustaining photosynthetic capacity. Plant Growth Regulation 76:83-98 https://doi.org/10.1007/s10725-015-0037-y
  88. Nakano T, Fujisawa M, Shima Y, Ito Y (2014) The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato. Journal of experimental botany 65(12):3111-3119 https://doi.org/10.1093/jxb/eru154
  89. Nakano T, Kato H, Shima Y, Ito Y (2015) Apple SVP family MADS-box proteins and the tomato pedicel abscission zone regulator JOINTLESS have similar molecular activities. Plant Cell Physiol 56(6):1097-1106. doi:10.1093/pcp/pcv034
  90. Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y (2012) MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant physiology 158(1):439-450 https://doi.org/10.1104/pp.111.183731
  91. Navas E, Fernandez R, Sepulveda D, Armada M, Gonzalez-De-santos P (2021) Soft grippers for automatic crop harvesting: A review. Sensors (Basel) 21(8):2689. doi:10.3390/s21082689
  92. Niruntrayakul S, Rerkasem B, Jamjod S (2009) Crossability between cultivated rice (Oryza sativa) and common wild rice (O. rufipogon) and characterization of F1 and F2 populations. Sci Asia 35:161-169
  93. Ogawa M, Kay P, Wilson S, Swain SM (2009) ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 are polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216-233. doi:10.1105/tpc.108.063768 
  94. Ohkuma K, Lyon JL, Addicott FT, Smith OE (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142(3599):1592-1593. doi:10.1126/science.142.3599.1592
  95. Patharkar OR, Walker JC (2015) Floral organ abscission is regulated by a positive feedback loop. Proceedings of the National Academy of Sciences 112(9):2906-2911
  96. Patharkar OR, Walker JC (2018) Advances in abscission signaling. J Exp Bot 69(4):733-740. doi:10.1093/jxb/erx256
  97. Patterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant physiology 126(2):494-500 https://doi.org/10.1104/pp.126.2.494
  98. Patterson SE, Bleecker AB (2004) Ethylene-dependent and-independent processes associated with floral organ abscission in Arabidopsis. Plant Physiology 134(1):194-203
  99. Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424(6944):85-88 https://doi.org/10.1038/nature01741
  100. Qin Y, Kim S-M, Zhao X, Jia B, Lee H-S, Kim K-M, Eun M-Y, Jin I-D, Sohn J-K (2010) Identification for quantitative trait loci controlling grain shattering in rice. Genes & Genomics 32:173-180
  101. Raja WH, UnNabi S, Kumawat K, Sharma O (2017) Pre harvest fruit drop: a severe problem in apple. Indian Farmer 4(8):609-614
  102. Reddy K, Hodges H, Reddy V (1992) Temperature effects on cotton fruit retention. Agronomy journal 84(1):26-30 https://doi.org/10.2134/agronj1992.00021962008400010006x
  103. Reichardt S, Piepho HP, Stintzi A, Schaller A (2020) Peptide signaling for drought-induced tomato flower drop. Science 367(6485):1482-1485. doi:10.1126/science.aaz5641
  104. Rick CM (1967) Fruit and pedicel characters derived from Galapagos Tomatoes'. Economic Botany 21(2):171-184 https://doi.org/10.1007/BF02897867
  105. Riov J (1974) A polygalacturonase from citrus leaf explants: role in abscission. Plant physiology 53(2):312-316 https://doi.org/10.1104/pp.53.2.312
  106. Riov J, Goren R (1979) Effect of ethylene on auxin transport and metabolism in midrib sections in relation to leaf abscission of woody plants. Plant, cell and environment 2(1):83-89. doi:10.1111/j.1365-3040.1979.tb00778.x
  107. Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cell separation processes. Annual review of plant biology 53(1):131-158 https://doi.org/10.1146/annurev.arplant.53.092701.180236
  108. Roberts JA, Whitelaw CA, Gonzalez-Carranza ZH, McManus MT (2000) Cell separation processes in plants-models, mechanisms and manipulation. Ann Bot 86(2):223-235. doi:10.1006/anbo.2000.1203
  109. Roman A-O, Jimenez-Sandoval P, Augustin S, Broyart C, Hothorn LA, Santiago J (2022) HSL1 and BAM1/2 impact epidermal cell development by sensing distinct signaling peptides. Nat Commun 13(1):876-876. doi:10.1038/s41467-022-28558-4
  110. Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56(1):13-27. doi:10.1111/j.1365-313X.2008.03577.x
  111. Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M (2016) Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. Elife 5:e15075
  112. Sawicki M, Ait Barka E, Clement C, Vaillant-Gaveau N, Jacquard C (2015) Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. Journal of Experimental Botany 66(7):1707-1719 https://doi.org/10.1093/jxb/eru533
  113. Sedgley M, Annells CM (1981) Flowering and fruit-set response to temperature in the avocado cultivar 'Hass'. Scientia horticulturae 14(1):27-33. doi:10.1016/0304-4238(81)90075-3
  114. Snipes CE, Baskin CC (1994) Influence of early defoliation on cotton yield, seed quality, and fiber properties. Field Crops Research 37(2):137-143
  115. Sriskantharajah K, El Kayal W, Torkamaneh D, Ayyanath MM, Saxena PK, Sullivan AJ, Paliyath G, Subramanian J (2021) Transcriptomics of improved fruit retention by hexanal in 'honeycrisp' reveals hormonal crosstalk and reduced cell wall degradation in the fruit abscission zone. International journal of molecular sciences 22(16):8830. doi:10.3390/ijms22168830
  116. Sto IM, Orr RJ, Fooyontphanich K, Jin X, Knutsen JM, Fischer U, Tranbarger TJ, Nordal I, Aalen RB (2015) Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2. Frontiers in Plant Science 6:931
  117. Tabuchi T (1999) Comparison on the development of abscission zones in the pedicels between two tomato cultivars. Journal of the Japanese Society for Horticultural Science 68(5):993-999 https://doi.org/10.2503/jjshs.68.993
  118. Taylor I, Baer J, Calcutt R, Walker JC (2019) Hypermorphic SERK1 mutations function via a SOBIR1 pathway to activate floral abscission signaling. Plant physiology 180(2):1219-1229 https://doi.org/10.1104/pp.18.01328
  119. Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytologist 151(2):323-340
  120. Thurber CS, Jia MH, Jia Y, Caicedo AL (2013) Similar traits, different genes? Examining convergent evolution in related weedy rice populations. Molecular Ecology 22(3):685-698 https://doi.org/10.1111/mec.12147
  121. Tucker ML, Yang R (2012) IDA-like gene expression in soybean and tomato leaf abscission and requirement for a diffusible stelar abscission signal. AoB Plants 2012:pls035-pls035. doi:10.1093/aobpla/pls035
  122. van Herck L, Kurtser P, Wittemans L, Edan Y (2020) Crop design for improved robotic harvesting: A case study of sweet pepper harvesting. Biosystems engineering 192:294-308. doi:10.1016/j.biosystemseng.2020.01.021
  123. Ventimilla D, Concha D, Gonzalez-Ibeas D, Talon M, Tadeo FR (2020) Differential expression of IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like genes in Nicotiana benthamiana during corolla abscission, stem growth and water stress. Durham: Research Square, Durham. doi:10.21203/rs.2.12900/v3
  124. Ventimilla D, Velazquez K, Ruiz-Ruiz S, Terol J, Perez-Amador MA, Vives MC, Guerri J, Talon M, Tadeo FR (2021) IDA (INFLORESCENCE DEFICIENT IN ABSCISSION)-like peptides and HAE (HAESA)-like receptors regulate corolla abscission in Nicotiana benthamiana flowers. BMC plant biology 21(1):1-226. doi:10.1186/s12870-021-02994-8
  125. Warrington I (2018) Fruit thinning: Advances and Trends. United States: John Wiley & Sons, Incorporated, United States. doi:10.1002/9781119521082.ch4
  126. Waszczak C, Carmody M, Kangasjarvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69(1):209-236. doi:10.1146/annurev-arplant-042817-040322
  127. Webster A, Spencer J, Dover C, Atkinson C (2006) The influence of sprays of GA3 and AVG on fruit abscission, fruit ripening and quality of two sweet cherry cultivars. Acta Horticulturae 727:467-472 https://doi.org/10.17660/ActaHortic.2006.727.57
  128. Wiggans S, Metcalfe D, Thompson H (1956) The use of desiccant sprays in harvesting Birdsfoot trefoil for seed 1. Agronomy Journal 48(7):281-284
  129. Wilmowicz E, Frankowski K, Kucko A, Swidzinski M, de Dios Alche J, Nowakowska A, Kopcewicz J (2016) The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. J Plant Physiol 206:49-58. doi:10.1016/j.jplph.2016.08.018
  130. Yang Z, Zhong X, Fan Y, Wang H, Li J, Huang X (2015) Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan). Front Plant Sci 6(MAY):1-10. doi:10.3389/fpls.2015.00360
  131. Ying P, Li C, Liu X, Xia R, Zhao M, Li J (2016) Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep 6(1):37135-37135. doi:10.1038/srep37135
  132. Yoon J, Cho LH, Kim SL, Choi H, Koh HJ, An G (2014) The BEL 1-type homeobox gene SH 5 induces seed shattering by enhancing abscission-zone development and inhibiting lignin biosynthesis. The Plant Journal 79(5):717-728 https://doi.org/10.1111/tpj.12581
  133. Yoon J, Cho L-H, Antt HW, Koh H-J, An G (2017) KNOX protein OSH15 induces grain shattering by repressing lignin biosynthesis genes. Plant Physiology 174(1):312-325 https://doi.org/10.1104/pp.17.00298
  134. Yuan R, Burns JK (2004) Temperature factor affecting the abscission response of mature fruit and leaves to CMN-Pyrazole and ethephon in 'Hamlin' oranges. Journal of the American Society for Horticultural Science 129(3):287-293. doi:10.21273/JASHS.129.3.0287
  135. Yuan R, Carbaugh DH (2007) Effects of NAA, AVG, and 1-MCP on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of 'Golden Supreme'and 'Golden Delicious' apples. HortScience 42(1):101-105 https://doi.org/10.21273/HORTSCI.42.1.101
  136. Zhao M, Li C, Ma X, Xia R, Chen J, Liu X, Ying P, Peng M, Wang J, Shi C-L (2020) KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. Journal of Experimental Botany 71(14):4069-4082  https://doi.org/10.1093/jxb/eraa162