참고문헌
- P. H. Bhathawala and A. P. Verma, A two-parameter singular perturbation solution of one dimension flow through unsaturated porous media, Appl. Math. 43 (1975), 380-384.
- T. A. Bullo, G. F. Duressa, and G. A. Degla, Higher order fitted operator finite difference method for two-parameter parabolic convection-diffusion problems, Inter. J. Engin. App. Sci. 11 (2019), 455-467.
- T. A. Bullo, G. F. Duressa, and G. A. Degla, Robust finite difference method for singularly perturbed two-parameter parabolic convection-diffusion problems, Int. J. Comput. Methods 18 (2021), no. 2, Paper No. 2050034, 17 pp. https://doi.org/10.1142/S0219876220500346
- P. P. Chakravarthy and M. Shivhare, Numerical study of a singularly perturbed two parameter problems on a modified Bakhvalov mesh, Comput. Math. Math. Phys. 60 (2020), no. 11, 1778-1786. https://doi.org/10.1134/S0965542520110111
- I. T. Daba and G. F. Duressa, Extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience, Int. J. Numer. Methods Biomed. Eng. 37 (2021), no. 2, Paper No. e3418, 20 pp.
- I. T. Daba and G. F. Dureessa, A robust computational method for singularly perturbed delay parabolic convection-diffusion equations arising in the modeling of neuronal variability, Comput. Methods Differ. Equ. 10 (2022), no. 2, 475-488. https://doi.org/10.22034/cmde.2021.44306.1873
- P. Das, A higher order difference method for singularly perturbed parabolic partial differential equations, J. Difference Equ. Appl. 24 (2018), no. 3, 452-477. https://doi.org/10.1080/10236198.2017.1420792
- P. Das and V. Mehrmann, Numerical solution of singularly perturbed convectiondiffusion-reaction problems with two small parameters, BIT 56 (2016), no. 1, 51-76. https://doi.org/10.1007/s10543-015-0559-8
- E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dun Laoghaire, 1980.
- K. Ganesh and K. Phaneendra, Computational technique for two parameter singularly perturbed parabolic convection-diffusion problem, J. Math. Comput. Sci. 10 (2020), 1251-1261.
- V. Gupta, M. K. Kadalbajoo, and R. K. Dubey, A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Int. J. Comput. Math. 96 (2019), no. 3, 474-499. https://doi. org/10.1080/00207160.2018.1432856
- S. Y. Hahn, J. Bigeon, and J. C. Sabonnadiere, An upwind finite element method for electromagnetic field problems in moving media, Inter. J. Numer. Meth. Engin. 24 (1987), 2071-2086. https://doi.org/10.1002/nme.1620241105
- M. K. Kadalbajoo and A. Awasthi, Crank-Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection-diffusion equations, Int. J. Comput. Math. 85 (2008), no. 5, 771-790. https://doi.org/10.1080/00207160701459672
- M. K. Kadalbajoo and A. S. Yadaw, Parameter-uniform finite element method for twoparameter singularly perturbed parabolic reaction-diffusion problems, Int. J. Comput. Methods 9 (2012), no. 4, 1250047, 16 pp. https://doi.org/10.1142/S0219876212500478
- V. Kumar and B. Srinivasan, A novel adaptive mesh strategy for singularly perturbed parabolic convection diffusion problems, Differ. Equ. Dyn. Syst. 27 (2019), no. 1-3, 203-220. https://doi.org/10.1007/s12591-017-0394-2
- T. Linss and H.-G. Roos, Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters, J. Math. Anal. Appl. 289 (2004), no. 2, 355-366. https://doi.org/10.1016/j.jmaa.2003.08.017
- T. B. Mekonnen and G. F. Duressa, Computational method for singularly perturbed two-parameter parabolic convection-diffusion problems, Cogent Math. & Stat. 7 (2020), 1829277.
- T. B. Mekonnen and G. F. Duressa, Uniformly convergent numerical method for twoparametric singularly perturbed parabolic convection-diffusion problems, J. Appl. Comput. Mech. 7 (2021), 535-545.
- T. B. Mekonnen and G. F. Duressa, A fitted mesh cubic spline in tension method for singularly perturbed problems with two parameters, Int. J. Math. Math. Sci. 2022 (2022), Art. ID 5410754, 11 pp. https://doi.org/10.1155/2022/5410754
- J. B. Munyakazi, A robust finite difference method for two-parameter parabolic convection-diffusion problems, Appl. Math. & Info. Sci. 9 (2015), 2877.
- N. K. Nichols, On the numerical integration of a class of singular perturbation problems, J. Optim. Theory Appl. 60 (1989), no. 3, 439-452. https://doi.org/10.1007/BF00940347
- R. E. O'Malley, Jr., Singular perturbations of boundary value problems for linear ordinary differential equations involving two parameters, J. Math. Anal. Appl. 19 (1967), 291-308. https://doi.org/10.1016/0022-247X(67)90124-2
- R. E. O'Malley, Jr., Topics in singular perturbations, Adv. in Math. 2 (1968), 365-470. https://doi.org/10.1016/0001-8708(68)90023-6
- R. E. O'Malley, Jr., Singular perturbation methods for ordinary differential equations, Applied Mathematical Sciences, 89, Springer-Verlag, New York, 1991. https://doi. org/10.1007/978-1-4612-0977-5
- E. O'Riordan and M. L. Pickett, Numerical approximations to the scaled first derivatives of the solution to a two parameter singularly perturbed problem, J. Comput. Appl. Math. 347 (2019), 128-149. https://doi.org/10.1016/j.cam.2018.08.004
- E. O'Riordan, M. L. Pickett, and G. I. Shishkin, Singularly perturbed problems modeling reaction-convection-diffusion processes, Comput. Methods Appl. Math. 3 (2003), no. 3, 424-442. https://doi.org/10.2478/cmam-2003-0028
- E. O'Riordan, M. L. Pickett, and G. I. Shishkin, Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems, Math. Comp. 75 (2006), no. 255, 1135-1154. https://doi.org/10.1090/S0025-5718-06-01846-1
- R. Ranjan and H. S. Prasad, A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts, J. Appl. Math. Comput. 65 (2021), no. 1-2, 403-427. https://doi.org/10.1007/s12190-020-01397-6
- H. G. Roos, Layer-adapted meshes: Milestones in 50 years of history, arXiv:1909.08273, 2019.
- M. Shivhare, P. C. Podila, and D. Kumar, A uniformly convergent quadratic B-spline collocation method for singularly perturbed parabolic partial differential equations with two small parameters, J. Math. Chem. 59 (2021), no. 1, 186-215. https://doi.org/10.1007/s10910-020-01190-7
- S. Yuzbasi and N. Sahin, Numerical solutions of singularly perturbed one-dimensional parabolic convection-diffusion problems by the Bessel collocation method, Appl. Math. Comput. 220 (2013), 305-315. https://doi.org/10.1016/j.amc.2013.06.027
- J. Zhang and Y. Lv, High-order finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion problem with two parameters, Appl. Math. Comput. 397 (2021), Paper No. 125953, 10 pp. https://doi.org/10.1016/j.amc.2021.125953