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EVALUATION SUBGROUPS OF THE PLÜCKER

EMBEDDING OF SOME QUATERNION GRASSMANNIANS

Oteng Maphane

Abstract. Let Gk,n(H) for 2 ≤ k < n denote the Grassmann manifold
of k-dimensional vector subspaces of Hn. In this paper, we determine

the evaluation subgroups of the Plüker embedding G2,n(H) ↪→ HPN−1,

where N =
(n
2

)
.

1. Introduction

Let us remind the notion of a Gottlieb group (see, for example, [5]). Given
a based CW-complex X, an element α ∈ πn(X) is a Gottlieb element of X if
(α, idX) : X ∨ Sn → X extends to α̃ : X × Sn → X. The set Gn(X) of all
Gottlieb elements α ∈ πn(X) is called the n-th Gottlieb group of X or the n-th
evaluation subgroup of πn(X) [5].

Gottlieb groups play a profound role in topology, covering spaces, fixed
point theory, homotopy theory of fibrations, and other fields. For instance, the
triviality of Gottlieb groups is related to the cross section problem of fibrations.

Further, let f : X → Y be a based map of simply connected finite CW-
complexes. As it was shown in [7], the evaluation at the basepoint ofX gives the
evaluation map ω : Map(X,Y ; f) → Y, where Map(X,Y ; f) is the component
of f in the space of mappings from X to Y. The image of the homomorphism
induced in homotopy groups

ω] : π∗Map(X,Y ; f)→ π∗(Y )

is called the n-th evaluation subgroup of f and it is denoted by Gn(Y,X; f).
Note that if f = idX , the space Map(X,Y ; f) is the monoid aut1(X) of self-
equivalences of X homotopic to the identity of X, then ev : aut1(X) → X is
the evaluation map, and the image of the induced homomorphism

ev] : π∗(aut1(X))→ π∗(X)

is Gn(X), i.e., the n-th Gottlieb group.
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In [12], Woo and Lee studied the relative evaluation subgroups Greln (X,Y ; f)
and proved that they fit in a sequence

· · · → Greln+1(X,Y ; f)→ Gn(X)→ Gn(X,Y ; f)→ · · ·

called the G-sequence of f. This sequence is exact in some cases, for instance,
if f is a homotopy monomorphism.

Recently, Smith and Lupton in [7] identified the homomorphism induced
on rational homotopy groups by the evaluation map ω : Map(X,Y ; f) → Y,
in terms of a map of complexes of derivations constructed directly from the
Sullivan minimal model of f. In [4], relative Gottlieb groups of the Plücker
embedding of some complex Grassmannians G2,n(C) ↪→ CPN−1, where N =
n(n − 1)/2, were studied. More specifically, it was shown that; Grel∗ (CPN−1,
G2,n(C)Q, h◦ i) splits as the direct sum of the suspension of G∗(G2,n(C)Q) and

G2N−1(CPN−1, G2,n(C)Q, h ◦ i), where h : CPN−1 → CPN−1Q is the rational-
ization.

In this paper, we use a map of complexes of derivations of minimal Sullivan
models of mapping spaces to compute rational relative Gottlieb groups of the
Plücker embedding of some quaternion Grassmannians G2,n(H) ↪→ HPN−1,
where N =

(
n
k

)
. More precisely, we show that; Grel∗ (HPN−1, G2,n(H)Q, f ◦ i)

splits as the direct sum of the suspension of G∗(G2,n(H)Q) and G4N−1(HPN−1,

G2,n(H)Q, f ◦ i), where f : HPN−1 → HPN−1Q is the rationalization.

2. Preliminaries

Through this paper, we rely on the theory of minimal Sullivan models in
rational homotopy theory for which [2] is our standard reference. All vector
spaces and algebras are taken over a field Q of rational numbers. We start with
recalling some definitions.

Definition 2.1. A commutative graded differential algebra (cdga) is a graded
algebra (A, d) such that xy = (−1)|x||y|yx and d(xy) = (dx)y + (−1)|pq|x(dy)
for all x ∈ Ap, y ∈ Aq. It is said to be connected if H0(A) ∼= Q. If V = ⊕i≥1V i
with V even := ⊕i≥1V 2i and V odd := ⊕i≥1V 2i−1, then ∧V denotes the free
commutative graded algebra defined by the tensor product

∧V = S(V even)⊗ E(V odd),

where S(V even) is the symmetric algebra on V even and E(V odd) is the exterior
algebra on V odd.

Definition 2.2. A Sullivan algebra is a commutative differential graded alge-
bra (∧V, d), where V = ∪k≥0V (k) and V (0) ⊂ V (1) ⊂ · · · such that dV (0) = 0
and dV (k) ⊂ ∧V (k − 1). It is called minimal if dV ⊂ ∧≥2V.

If (A, d) is a cdga of which the cohomology is connected and finite dimen-
sional in each degree, then there always exists a quasi-isomorphism from a
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Sullivan algebra (∧V, d) to (A, d) [2]. To each simply connected space, Sulli-
van associates a cdga APL(X) of rational polynomial differential forms on X
that uniquely determines the rational homotopy type of X [11]. A minimal
Sullivan model of X is a minimal Sullivan model of APL(X). More precisely,
H∗(∧V, d) ∼= H∗(X;Q) as graded algebras and V ∼= π∗(X)⊗Q as graded vector
spaces.

Let (A, d) be a cdga. A derivation θ of degree k is a linear mapping θ : An →
An−k such that θ(ab) = θ(a)b + (−1)k|a|aθ(b). Denote by Derk A the vector
space of all derivations of degree k, and DerA = ⊕k Derk A. The commutator
bracket induces a graded Lie algebra structure on DerA. Moreover, (DerA, δ)
is a differential graded Lie algebra (see, for example, [11]), with the differential
δ defined in the usual way by

δθ = d ◦ θ + (−1)k+1θ ◦ d.
Let (∧V, d) be a Sullivan algebra where V is spanned by {v1, . . . , vk}. Then,

Der∧V is spanned by θ1, . . . , θk, where θi is the unique derivation of ∧V defined
by θi(vj) = δij . The derivation θi will be denoted by (vi, 1). It is known (see [2]),
that an element v ∈ V ∼= π∗(X)⊗Q is a Gottlieb element of π∗(X)⊗Q if and
only if there is a derivation θ of ∧V satisfying θ(v) = 1 and such that δθ = 0.
Let φ : (A, d)→ (B, d) be a morphism of cdga’s. A φ-derivation of degree k is a
linear mapping θ : An → Bn−k for which θ(ab) = θ(a)φ(b) + (−1)k|a|φ(a)θ(b).
We consider only derivations of positive degree. Denote by Dern(A,B;φ) the
vector space of φ-derivations of degree n for n > 0, and by Der(A,B;φ) =
⊕n Dern(A,B;φ) the graded vector space of all φ-derivations. The differential
graded vector space of φ-derivations is denoted by (Der(A,B;φ), ∂), where the
differential ∂ is defined by ∂θ = dB ◦ θ+ (−1)k+1θ ◦ dA. In the case A = B and
φ = 1B , the vector space (Der(B,B; 1), ∂) is just a usual differential graded
Lie algebra of derivations on the cdga B (see [7]). We note that, there is an
isomorphism of graded vector spaces

Der(A,B;φ) ∼= Hom(V,B).

If {vi} is a basis of V, then the vector space Der(A,B;φ) is spanned by the
unique φ-derivation θ denoted by (vi, bi) and (vi, 1) such that{

θi(vi) = bi,

θi(vj) = 0, i 6= j, bi ∈ B.

It was shown in [7] that a pre-composition with φ gives a chain complex map φ∗ :
Der(B,B; 1) → Der(A,B;φ), and a post-composition with the augmentation
ε : B → Q gives a chain complex map ε∗ : Der(A,B;φ) → Der(A,Q; ε). The
evaluation subgroup of φ is defined as follows:

Gn(A,B;φ) = Im{H(ε∗) : Hn(Der(A,B;φ))→ Hn(Der(A,Q; ε))}.
In the case A = B and φ = 1B , we get the Gottlieb group of (B, d) defined as

Gn(B) = Im{H(ε∗) : Hn(Der(B,B; 1))→ Hn(Der(B,Q; ε))}.
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In particular, Gn(B) ∼= Gn(XQ), if B is the minimal Sullivan model of a simply
connected space X [2, Proposition 29.8].

Definition 2.3. A simply connected space X is called formal (see [3]) if there
is a quasi-isomorphism (∧V, d) → H∗(∧V, d), where (∧V, d) is the minimal
Sullivan model of X.

Examples of formal spaces include spheres, projective complex spaces, ho-
mogeneous spaces G/H where G and H have equal rank, and compact Kähler
manifolds.

3. Evaluation subgroups of a map

The quaternion GrassmannianGk,n(H) is a homogeneous space asGk,n(H) ∼=
Sp(n)/(Sp(k) × Sp(n − k)) for 1 ≤ k < n, of equal rank as well as a Kähler
manifold, hence it is formal (see, for example, [11, §12] and [1]). It is a Kähler
manifold of dimension 2m, where m = 2k(n − k). The method to compute a
Sullivan model of the homogeneous space Gk,n(H) is given in details in [6, 9].
Thus, a Sullivan model of Gk,n(H) for 1 ≤ k < n is given by (see [9])

(∧(b4, b8, . . . , b4k, x4, x8, . . . , x4(n−k), y3, y7, . . . , y4n−1), d)

with

(3.1) dbi = 0 = dxj , dy4p−1 =
∑

p1+p2=p

b4p1 · x4p2 , 1 ≤ p ≤ n.

Lemma 3.1. If 2 ≤ k < n, then the minimal Sullivan model of Gk,n(H) is
given by

(∧(b4, . . . , b4k, y4(n−k)+3, . . . , y4n−1), d),

where dbi = 0 and dy4(n−k)+3 ∈ ∧(b4, . . . , b4k).

Proof. Consider the Sullivan model from equation (3.1)

(∧(b4, b8, . . . , b4k, x4, x8, . . . , x4(n−k), y3, y7, . . . , y4n−1), d)

of Gk,n(H) for 2 ≤ k < n,

dy3 = b4 + x4,

dy7 = b8 + x8 + b4x4,

...

dy2n−1 = b4kx4(n−k).

The model is not minimal as the linear part is not zero. To find its minimal
Sullivan model, we make a change of variable t4 = b4 + x4 and replace x4 by
t4−b4 wherever it appears in the differential. This gives an isomorphic Sullivan
algebra

(∧(b4, t4, b8, . . . , b4k, x4, . . . , x4(n−k), y3, y7, . . . , y4n−1), d),
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where

dy3 = t4,

dy7 = b8 + x8 + b4(t4 − b4),

...

dy4n−1 = b4kx4(n−k).

As the ideal generated by y3 and t4 is acyclic, the above Sullivan algebra is
quasi-isomorphic to

(∧(b4, b8, . . . , b4k, x8, . . . , x4(n−k), y7, . . . , y4n−1), d),

where

dy7 = b8 + x8 − b24,
...

dy4n−1 = b4kx4(n−k).

One continues in this fashion and make another change of variable, t8 = b8 +
x8 − b24 and replace x8 by t8 − b8 + b24 wherever it appears in the differential
and do so until they reach a change of variable of the form

t4(n−k) = b4(n−k) + x4(n−k) + α for n = 4k, or

t4(n−k) = x4(n−k) + β for n > 4k,

where α ∈ ∧(b4, . . . , b4(k−1)), β ∈ ∧(b4, . . . , b4k) and replace

x4(n−k) =

{
t4(n−k) − b4k + α for n = 4k,

t4(n−k) + β for n > 4k,

wherever it appears in the differential. This gives an isomorphic Sullivan alge-
bra

(∧(b4, . . . , b4k, y4(n−k)−1, y4(n−k)+3, . . . , y4n−1), d),

where

dy4(n−k)−1 = t4(n−k),

...

dy4n−1 = b4kx4(n−k).

As the ideal generated by t4(n−k) and y4(n−k)−1 is acyclic, we get the minimal
Sullivan model:

(∧(b4, . . . , b4k, y4(n−k)+3, . . . , y4n−1), d)

with dbi = 0 and dy4(n−k)+3 ∈ ∧(b4, . . . , b4k). �
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On the other hand, the minimal Sullivan model of the quaternion projective
space HPn is given by (∧(x4, x4n+3), d) with dx4 = 0, dx4n+3 = xn+1

4 (see [8]).
It follows by an induction argument that

N =

(
n

k

)
> k(n− k).

Therefore, H≥4N (Gk,n(H),Q) = 0. Hence, bN4 is coboundary in

(∧(b4, . . . , b4k, y4(n−k)+3, . . . , y4n−1), d).

Note that the minimal Sullivan model of HPN−1 is given by

(∧(x4, x4N−1), d),

where dx4 = 0 and dx4N−1 = xN4 .
A Sullivan model of the inclusion i : G2,n(H) ↪→ HPN−1 is given by

φ : (∧(x4, x4N−1), d)→ (∧(b4, b8, y4n−5, y4n−1), d),

where

φ(x4) = b4, φ(x4N−1) = y, dy = yN4 .

Theorem 3.2. Let B = (∧(b4, b8, y4n−5, y4n−1), d). Then

Gn(B) = 〈[y∗4n−5], [y∗4n−1]〉.

Proof. Let α4n−1 =(y4n−1, 1) and α4n−5 =(y4n−5, 1). Then δα4n−1 =δ4n−5 =0.
Moreover, α4n−1 and α4n−5 can not be boundaries for degree reason. There-
fore, [α4n−1] and [α4n−5] are non zero homology classes in H∗(Der(B,B; 1)).
Further, ε∗(α4n−2) = y∗4n−1 and ε∗(α4n−5) = y∗4n−5. As G2,n(H) is a fi-
nite CW-complex, then Geven(B) = 0 (see [2, Page 379]). Hence, Gn(B) =
〈[y∗4n−5], [y∗4n−1]〉. �

It is easy to see by an induction argument that
(
n
2

)
= n(n− 2)/2.

Lemma 3.3. Let N = n(n− 2)/2. Then 4(N − 1) > 8n− 16 for n ≥ 4.

Proof. The inequality 4(N−1) > 8n−16 simplifies to the inequality 2(N−1) >
4n− 8 for n ≥ 4, which is the inequality given in [4, Lemma 6]. �

Lemma 3.4. Given φ : A = (∧(x4, x4N−1), d)→ (∧(b4, b8, y4n−5, y4n−1), d) =
B, where φ(x4) = b4, φ(x4N−1) = y, dy = yN4 . There exists a φ-derivation θ4
such that θ4(x4) = 1 and it is a cycle.

Proof. As θ4(x4) = 1, then ∂(θ4)(x4) = 0. Now it only remains to define θ4 on
x4N−1 such that

dθ4(x4N−1)− θ4(dx4N−1) = 0.

Hence,

dθ4(x4N−1)− θ4(dx4N−1) = dθ4(x4N−1)− θ4(xN4 )

= dθ4(x4N−1)−NxN−14 .
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As the dimension of G2,n(H) is less than 4(N − 1) by Lemma 3.3, then NxN−14

is boundary, that is, NxN−14 = dr. Define θ4(x4N−1) = r. Moreover, ∂θ4 = 0.
Therefore, θ4 cannot be a boundary, hence it is a non-zero homology class in
H∗(Der(A,B;φ), ∂). �

Theorem 3.5. Consider the inclusion G2,n(H) ↪→ HPN−1, and let φ : A→ B
be its Sullivan model. Then G∗(A,B;φ) = 〈[x∗4], [x∗4N−1]〉.

Proof. Define the derivation θ4N−1 = (x4N−1, 1) in Der(A,B;φ). Then ∂θ4N−1
= 0. Moreover, [θ4N−1] is a non-zero homology in H∗(Der(A,B;φ), ∂), and
[θ4] is a non-zero homology class in H∗(Der(A,B;φ), ∂) by Theorem 3.4. Fur-
ther, H(ε∗)([θ4]) = [x∗4] and H(ε∗)([θ4N−1]) = [x∗4N−1]. It then follows that
G∗(A,B;φ) = 〈[x∗4], [x∗4N−1]〉. �

Definition 3.6. Let φ : A→ B be a map of differential graded vector spaces.
A differential graded vector space, Rel∗(φ), called the mapping cone of φ (see,
for example, [7,10]) is defined by Reln(φ) = An−1 ⊕Bn for all n > 1, with the
differential δ(a, b) = (−dA(a), φ(a)+dB(b)). There are inclusion and projection
chain maps J : Bn → Reln(φ) and P : Reln(φ) → An−1 defined by J(w) =
(0, w) and P (a, b) = a, respectively. These yields a short exact sequence of
chain complexes

0→ B∗
J→ Rel∗(φ)

P→ A∗−1 → 0

and a long exact homology sequence of φ

· · · → Hn+1(Rel(φ))
H(P )→ Hn(A)

H(φ)→ Hn(B)
H(J)→ Hn(Rel(φ))→ · · ·

whose connecting homomorphism is H(φ).

Following [7], we consider a commutative diagram of differential graded vec-
tor spaces;

Der(B,B; 1)

ε∗

��

φ∗
// Der(A,B;φ)

ε∗

��
Der(B,Q; ε)

φ̂∗
// Der(A,Q; ε),

where ε is the augmentation of either A or B. On passing to homology and
using the naturality of the mapping cone construction, we obtain the following
homology ladder for n ≥ 2,

· · · → Hn+1(Rel(φ∗))

H(ε∗,ε∗)
��

H(P ) // Hn(Der(B,B; 1))

H(ε∗)

��

H(φ∗)// Hn(Der(A,B;φ))→ · · ·

H(ε∗)

��
· · · → Hn+1(Rel(φ̂∗))

H(P̂ ) // Hn(Der(B,Q; ε))
H(φ̂∗)// Hn(Der(A,Q; ε))→ · · · .

The n-th relative evaluation subgroup of φ is defined as follows:

Greln = Im{H(ε∗, ε∗) : Hn(Rel(φ∗))→ Hn(Rel(φ̂∗))}.
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The G-sequence of the map φ : A→ B is given by the sequence

· · · H(Ĵ)→ Greln+1(A,B;φ)
H(P̂ )→ Gn(B)

H(φ̂∗)→ Gn(A,B;φ)
H(Ĵ)→ · · ·

which ends in G2(A,B;φ). Moreover, as it was shown in [7, Theorem 3.5], this
can be applied to the Sullivan model φ : A→ B of the map f : X → Y.

Given the inclusion G2,n(H) ↪→ HPN−1, and φ : A = (∧(x4, x4N−1), d) →
(∧(b4, b8, y4n−5, y4n−1), d) = B its Sullivan model. Note that Rel∗(φ

∗) =
Ker(ε∗, ε∗) ⊕M, where M is isomorphic to Im(ε∗, ε∗). Then a non-zero ele-
ment in Grel∗ (A,B;φ) is an element in M modulo the kernel of (ε∗, ε∗) (see [4]).
Therefore, the vector space M is spanned by

{(0, θ4), (0, θ4N−1), (sγ4, 0), (sγ8, 0), (sγ4n−5, 0), (sγ4n−1, 0)},

where γi is a derivation in Der(B,B; 1).

Lemma 3.7. (0, θ4) = J(θ4) is a non-zero homology class in H4(Rel∗(φ
∗)).

Proof. Since (0, θ4n) is a cycle, it is left to show that it is not a boundary.
We claim there is γ′4 ∈ DerB such that D(sγ′4, 0) = (−sδγ′4, φ∗(γ′4)) = (0, θ4).
Hence, δγ′4 = 0, and φ∗(γ′4) = θ4. Therefore, φ∗(γ′4)(x4) = θ4(x4) = 1. It follows
that γ′4(b4) = 1. But γ′4 cannot be a cycle, because H(ε∗)([γ

′
4]) = [b∗4] 6= 0 would

be a non-zero element in π4(XQ), which contradicts [2, Proposition 28.8]. Thus,
[(0, θ4)] is a non-zero homology class in H4(Rel(φ∗)). �

We now give the following result.

Theorem 3.8. Grel∗ (A,B;φ) ∼= sG∗(B) ⊕ G4N−1(A,B;φ). Moreover, the G-
sequence

(3.2) 0 = G4(B)→ G4(A,B;φ)
H(Ĵ)→ Grel4 (A,B;φ)→ 0

is not exact.

Proof. It is easy to see that ∂γ4 6= 0 and ∂γ8 6= 0 in Der(A,B;φ). Fur-
ther, (sγ4n−5, 0) and (sγ4n−1, 0) are non-zero homology classes in Rel∗(φ

∗).
Note that in Rel∗(φ

∗), one gets D(sb∗4, 0) = (0, φ∗(b∗4)) = (0, x∗4). Hence,
H(ε∗, ε∗)([(0, θ4)]) = [(0, x∗4)] is zero in H(Rel∗(φ

∗)). We deduce that

Grel4 (A,B;φ) = 0.

Therefore,

Grel∗ (A,B;φ) = ImH(ε∗, ε∗),

= 〈[(sy∗4n−5, 0)], [(sy∗4n−1, 0)], [(0, x∗4N−1)]〉,
= sG∗(B)⊕G4N−1(A,B;φ).

The G-sequence (3.2) is not exact as H(Ĵ)([x∗4]) = 0. Thus, H(Ĵ) is not injec-
tive. �
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Example 1. Consider G2,5(H) for which the minimal Sullivan model is given
by

(∧(b4, b8, y15, y19), d),

where db4 = db8 = 0, dy15 = b44 + 2b8b
2
4, dy19 = 2b54 + 2b8b

3
4. The inclusion

G2,5(H) ↪→ HP 9 is modelled by

φ : A = (∧(x4, x39), d)→ (∧(b4, b8, y15, y19), d) = B,

where φ(x4) = b4. As G2,5(H) is a smooth manifold of dimension 24, then the
cohomology class [b104 ] is zero. Thus, there is a y ∈ B such that dy = b104 . A
straightforward calculation shows that b94 = d(2b44y19 − b54y15), therefore b104 =
d(2b54y19 − b64y15). Hence, φ(x39) = 2b54y19 − b64y15.

Note that θ4 ∈ Der(A,B;φ) is a φ-derivation defined by θ4(x4) = 1 and
θ4(x39) = 10(2b44y19 − b54y15). Therefore, θ4 is a cycle, and H(ε∗)([θ4]) = [x∗4] ∈
G4(A,B;φ) is in the kernel of H(Ĵ).
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