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SOME RESULTS INVOLVING THE REPRESENTATION OF

THE CENTRALIZER OF A MATRIX

Smail Bouarga

Abstract. In this paper, we investigate the dimension and the structure

of the centralizer of a square matrix with entries from an arbitrary field.

1. Introduction

Throughout this paper, K denotes an arbitrary field,Mn(K) all n by n ma-
trices with entries from K. For a given n by n matrix A over K, its centralizer
C(A) is the subalgebra of Mn(K) consisting of all matrices B that commute
with A. For a given n by n matrix A over K and m by m matrix over K, the
Sylvester space C(A,B) of A and B is the set of all n by m T -matrices over K
such that AT = TB (see [3]). There are several reasons to devote a study to
the centralizer C(A). Indeed the centralizer C(A) is the set of solutions of the
homogenous equation of

AX −XA = C,(1)

where X ∈ Mn(K). On another side, the representation of the centralizer of
a given square matrix, C(A) of A is related to the problem of representation
of the Sylvester space C(A,B) which is neither else the set of solutions of the
homogenous matrix equation

AX −XB = C,(2)

where X ∈ Mn×m(K), that plays a central role in many areas of applied
mathematics and, in particular in systems and control theory. The structure of
C(A) is only known for non-derogatory matrices (resp. cyclic endomorphism).
In [8] author treats the problem of determining C(A) over the real and the
complex field. We aim to give some results in the characterization of C(A) over
an arbitrary field by using results from module theory.
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2. Preliminaries

In this section, we introduce notations and mathematical objects used in
this paper.

2.1. Notations

Throughout this paper, the following notations are used.

• K, an arbitrary field.
• Mn(K), the set of n by n matrices with entries from K.
• C(A), the centralize of A.
• C(A,B) of A and B is the set of all n by m T -matrices over K such

that AT = TB.
• CA or CA(X), the characteristic polynomial of A.
• mA or mA(X), the minimal polynomial of A.
• diag(A1, A2, . . . , Am), a block diagonal matrix with matrices A1, A2,
. . . , Am on its main diagonal blocks.

• K[B] denotes the subspace of Mn(K) spanned by all powers of B.
• Mr(K[B]) denote the set of all r × r matrices A = (fij) with entries
fij ∈ K[B].

• Comp(mA), the companion matrix of mA.
• ⊕ri=1 ⊕rj=1 C(Ai, Aj), the direct sum of the C(Ai, Aj).
•
∏s
i=1 C(Ai), the product of the C(Ai).

• deg f , the degree of f .
• dimK C(A), dimension of C(A).

2.2. Notions from module theory

We include some well-known results which are used for developing the proof
of our main result. Let A ∈ Mn(K) be a non zero matrix, and MA be the
K[X]-module induced by A. From theory of finitely generated torsion module
over P.I.D (see [5, p. 215], [6, §2, p. 556], and [1, p. 235]), we have the following
theorems.

Theorem 2.1. Let A ∈ Mn(K) be a non zero matrix, and MA be the K[X]-
module induced by A. Then there exists a unique sequence of polynomials
q1, . . . , qr such that:

MA '
K[X]

(q1)
⊕ K[X]

(q2)
⊕ · · · ⊕ K[X]

(qr)

and

• qi divides qi+1 for all 1 ≤ i ≤ r − 1,
• qr = mA the minimal polynomial of A and

∏r
i=1 qi = CA the charac-

teristic polynomial of A.

The ascending sequence of polynomials q1, . . . , qr are unique up similarity and
called the invariant factors of A.
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A matrix A with entries from a field K is said to be in rational canonical
form if there exists an ordered set {f1, f2, . . . , fr} of polynomials in K[X] such
that fi divides fi+1 for all i ∈ {1, . . . , r − 1} and

A =


A1 0 · · · 0
0 A2 · · · 0
... · · · · · ·

...
0 0 · · · Ar

 ,

where Ai is the companion matrix of fi, and each 0 is zero matrix of appropriate
order.

Theorem 2.2 (Rational canonical form). Every square matrix with entries in
a field K is similar to a unique matrix in rational canonical form.

A partition λ = (λ1, . . . , λr) of a positive integer n is a finite nonincreasing
sequence of positive integers λ1, λ2, . . . , λr such that

∑r
i=1 λi = n. The λi are

called the parts of the partition λ.
Let λ = (λ1, λ2, . . . , λr) be a partition of the number n and let λ′i be the

number of parts of the partition λ that are ≥ i, or equivalently the largest j
such that λj ≥ i. Then λ∗ = (λ′1, λ

′
2, . . . , λ

′
s) is a partition of the number n

called the conjugate partition of the partition λ.
The partition λ = (λ1, . . . , λr) of n can be graphically visualized with

Young’s diagram: the ith row of the graphical representation of (λ1, . . . , λr)
contains λi unit square (see [2, pp. 1–7]).

3. Main results

In this part, we aim to give some characterizations of C(A).

Theorem 3.1. Let A ∈Mn(K) be a non zero matrix and r the number of its
invariant factors. If B = Comp(mA), then

C(A) is isomorph to Mr(K[B]) as K algebras if and only if CA = (mA)r.

The proof of Theorem 3.1 involves the two following lemmas.

Lemma 3.2 ([1, Theorem 5.15, p. 336]). Let A ∈Mn(K) be a non zero matrix.
Then

dimK C(A) =

r∑
i=1

(2r − 2i+ 1)di (Frobenius formula),

where qi are the invariant factors of A and di = deg qi.

Lemma 3.3. Let A ∈ Mn(K). If A is a block diagonal matrix, i.e., A =
diag(A1, A2, . . . , Am), where Ai are ni × ni square matrices such that n1 +
· · ·+ nr = n. Then the centralizer of the matrix A is

C(A) ' ⊕ri=1 ⊕rj=1 C(Ai, Aj).
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Proof. Let T ∈ Mn(K). Write T = (Tij) as an r × r block matrix with the
same block structure as A. If T ∈ C(A), then AiTij = TijAj hence Tij ∈
C(Ai, Aj). Conversely if T = (Tij) with Tij ∈ C(Ai, Aj), then AT = (AiTij)
and TA = (AjTij), since Tij ∈ C(Ai, Aj). Then T ∈ C(A). �

Proof of Theorem 3.1. Let A ∈Mn(K) and q1, . . . , qr be the invariant factors
of A. Assume that C(A) is isomorphic to Mr(K[B]). Then

(3) dimK C(A) = r2 deg(mA).

By virtue of Lemma 3.2 we have

(4) dimK C(A) =

r∑
i=1

(2r − 2i+ 1)di,

where di = deg qi for all 1 ≤ i ≤ r, it follows from (3) that

(5)

r∑
i=1

(2r − 2i+ 1)di = r2dr.

According to (5) and by remarking that r2 =
∑r
i=1(2r − 2i+ 1), we have

(6)

r∑
i=1

(2r − 2i+ 1)(dr − di) = 0.

The equality (6) gives dr = di for all 1 ≤ i ≤ r since [2(r − i) + 1] > 0
and dr ≥ di for each 1 ≤ i ≤ r. Consequently qi = qr for each 1 ≤ i ≤ r.
Therefore CA = (mA)r. Conversely, suppose that CA = (mA)r. According to
the following decomposition CA =

∏r
i=1 qi, where q1, . . . , qr are the invariant

factors of A such that qi | qi+1 for all 1 ≤ i ≤ r − 1, so we have q1 = · · · =
qr−1 = qr. By applying Theorem 2.1 we get, the following rational canonical
form of A,

A = diag(B,B, . . . , B)

=


B 0 · · · 0
0 B · · · 0
... · · · · · ·

...
0 0 · · · B

 ,

where B is the companion matrix of mA = q1 = · · · = qr. Then we can invoke
Lemma 3.3 to conclude that the centralizer C(A) of the matrix A is isomorphic
to Mr(K[B]). �

3.1. Case of a primary matrix

Let A ∈ Mn(K) and B ∈ Mm(K). Recall that the matrices A and B are
said to be coprime if there exist two coprime polynomials P and Q in K[X]
such that P (A) = 0 and Q(B) = 0. If the matrices A and B are coprime, then
C(A,B) = 0 (see [3]).
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Let A ∈ Mn(K) and P be an irreducible monic polynomial of K[X]. We will
say that A is a P -primary matrix if the characteristic polynomial of A is a
power of P .

Lemma 3.4. Let A ∈ Mn(K) be a non zero matrix. Then A is similar to a
block diagonal Pi-primary matrices diag(A1, A2, . . . , As).

Proof. Let mA =
∏s
i=1 P

αi
i be the prime decomposition of mA. By the primary

decomposition theorem (see Theorem 1.5.1, p. 29 in [7]), A is similar to a block
diagonal Pi-primary matrices diag(A1, A2, . . . , As). �

Lemma 3.5. Let A ∈Mn(K) be a non zero matrix. Then the centralizer C(A)
of the matrix A is isomorph to the ring

∏s
i=1 C(Ai), where A1, A2, . . . , As are

pairwise coprime matrices.

Proof. By Lemma 3.4, A is similar to a block diagonal Pi-primary matri-
ces diag(A1, A2, . . . , As) furthermore the Ai’s are pairwise coprime matrices.
Hence, by Lemma 3.3, the centralizer of the matrixA is isomorph to

∏s
i=1 C(Ai).

�

Remark that by Lemma 3.5 the study of the centralizer C(A) reduces to the
study of the centralizer of a P -primary matrix.

Lemma 3.6. If A ∈ Mn(K) is a P -primary matrix such that mA = Pα and
CA = P β with α ≤ β, then there exists a partition λ = (λ1, . . . , λr) of β such
that λ1 = α and qi = Pλr−i+1 for any 1 ≤ i ≤ r are the invariant factors of A.

Proof. Since mA = Pα and CA = P β , the invariant factors of A are of the form
Pαi , 1 ≤ i ≤ r with α1 ≤ α2 ≤ · · · ≤ αr = α and Σri=1αi = β. Set λi = αr−i+1

and qi = Pλr−i+1 for each 1 ≤ i ≤ r, we can verify easily that

• λ1 ≥ λ2 ≥ . . . ≥ λr = α and Σri=1λi = β.
• qi | qi+1 for 1 ≤ i ≤ r − 1, qr = mA and

∏r
i=1 qi = CA. �

Theorem 3.7. Let A ∈Mn(K) be a P -primary matrix. If r is the number of
invariant factors of A and B is the companion matrix of mA, then the following
assertions are equivalent:

(1) mA = P .
(2) dimK C(A) = r2 deg(P ).
(3) C(A) 'Mr(K[B]).

Proof. Let mA = Pα and CA = P β .
(1) ⇒ (2) If α = 1, then q1 = · · · = qr = P are the invariant factors of A

and r = β. Then by Lemma 3.2

dimK C(A) =

r∑
i=1

(2r − 2i+ 1) deg(qi)

=

[
(2r + 1)r − 2

r∑
i=1

i

]
deg(P )
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=

[
(2r + 1)r − 2r(r + 1)

2

]
degP

= r2 degP.

(2)⇒ (1) If dimK C(A) = r2 deg(P ), let λ = (λ1, . . . , λr) be the partition of
β such that λ1 = α and qi = Pλr−i+1 , 1 ≤ i ≤ r are the invariant factors of A,
it’s enough to prove that λ1 = · · · = λr = 1. Indeed by hypothesis and by virtue
of Lemma 3.2 we have dimK C(A) =

∑r
i=1(2r−2i+1)λr−i+1 degP = r2 degP .

Then by remarking that
∑r
i=1(2r − 2i + 1) = r2 we get

∑r
i=1[(2r − 2i +

1)(λr−i+1 − 1)] = 0. Therefore (λr−i+1 − 1) = 0 for all 1 ≤ i ≤ r because
[2(r − i) + 1] > 0 for each 1 ≤ i ≤ r. Thus λ1 = · · · = λr = 1.

For the equilibrium (1)⇔ (3), it suffice to apply Theorem 3.1. �

Theorem 3.8. Let A ∈ Mn(K) be a P -primary matrix such that CA = P β.
Let λ= (λ1, . . . , λr) be the partition of β such that q1, . . . , qr are the invariant
factors of A where, qi = Pλr−i+1 for any 1 ≤ i ≤ r. Then

dimK C(A) =

[
s∑

k=1

λ′
2
k

]
deg(P ),

where λ∗=(λ′1, . . . , λ
′
s) is the conjugate partition of the partition λ=(λ1, . . . , λr).

To prove the theorem we need the following lemma:

Lemma 3.9 ([7, Proposition 3.3.1, p. 106]). Let λ = (λ1, λ2, . . . , λk) be a
partition of the number n and λ∗ = (λ′1, λ

′
2, . . . , λ

′
s) be its conjugate partition.

Then
k∑
i=1

(2i− 1)λi =

s∑
i=1

λ′
2
i .

Proof. By Lemma 3.2 and Lemma 3.9, we have

dimK C(A) =

r∑
i=1

(2r − 2i+ 1) deg(qi)

=
r∑
i=1

(2(r − i+ 1)− 1) deg(qi)

=

r∑
j=1

(2j − 1) deg(qr−j+1)

=

r∑
j=1

(2j − 1) deg(Pλj )

=

 r∑
j=1

(2j − 1)λj

deg(P )
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=

[
s∑
i=1

λ′
2
i

]
deg(P ).

Thus the desired result. �

Corollary 3.10. Let A ∈Mn(K) be a non zero matrix. If mA =
∏r
i=1 Pi and

CA =
∏r
i=1 P

βi

i , where Pi is an irreducible monic polynomial of K[X] for all
1 ≤ i ≤ r. Then

dimK C(A) =

r∑
i=1

β2
i deg(Pi).

Proof. By Theorem 3.7 we have dimK C(Ai) = β2
i deg(P ) for all 1 ≤ i ≤ r.

Then we invoke Lemma 3.5, to obtain

dimK C(A) = dimK

(
r∏
i=1

C(Ai)

)

=

r∑
i=1

dimK C(Ai)

=

r∑
i=1

β2
i deg(Pi).

�

We deduce the well known result (see [4], or [7]).

Corollary 3.11. Let A ∈ Mn(K). If mA =
∏r
i=1(X − λi) and CA(X) =∏r

i=1(X − λi)βi , then dimK C(A) =
∑r
i=1 β

2
i .
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