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GENERALIZING SOME FIBONACCI-LUCAS RELATIONS

JunGcHYUN HONG, JONGMIN LEE, AND HO PARK

ABSTRACT. Edgar obtained an identity between Fibonacci and Lucas
numbers which generalizes previous identities of Benjamin—Quinn and
Marques. Recently, Dafnis provided an identity similar to Edgar’s. In
the present article we give some generalizations of Edgar’s and Dafnis’s
identities.

1. Introduction and statement of main results
Let F,, denote the nth Fibonacci number defined by
FOZOa F1:17 Fn,:Fn—1+Fn—2 (77,22)

Lucas numbers L,, are defined as Lo =2, Ly =1,and L, = L,,_1 + L,,_o for
n > 2. In 1999, Benjamin and Quinn [1] obtained an identity

n
Z 2L, =2 F,
i=0
between Fibonacci and Lucas numbers. An analogous identity was proven by
Marques [5] as

D 3 (Li+ Fip1) = 3" P
i=0
and these two identities were generalized by Edgar [3] as

n
> mi(Li+ (m—=2)Fp1) =m" M Py
=0
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Recently, Dafnis [2] showed another identity
n
S (1) Ly + (m— 2)F) = (~1)" Fyr,
i=0
which is similar to Edgar’s identity. In the same article, he further obtained
an identity
n
D (UM (Vi + (m = 2)T; = 3T5-1) = (=1)" T
i=0
between Tetranacci numbers T; and Lucas-Tetranacci numbers V.
The main purpose of the present article is to generalize Edgar’s and Dafnis’s
identities.

Theorem 1.1. Let k and n be nonnegative integers and let m be a real number.
Then we have
(1) Yo m*(LiiFy + (mLk — 2) Fyix) = m" ' Ly Fyn o,
(2) Ez om (5Flek + (mLk - 2)Lkl+k) n+1LkLkn+k — 2L,
(3) Yio(=1)'m" *(LpiyxFr + (mLg + 2(=1)* )Fm) = (=1)"LFn+ks
(4) Xio(— )2 "5 Py i A (mLg +2(=1)%) Lyi) = L ((=1)" L1k +

Note that we can derive Edgar’s and Dafnis’s identities from Theorem 1.1(1)
and (3) with & = 1. In Section 2, we prove Theorem 1.1. In Section 3, we also
provide several additional identities similar to Edgar’s and Dafnis’s identities.

2. Proof of Theorem 1.1

The following is well-known identities of Fibonacci and Lucas numbers which
will often be used in the proofs of our theorems.

Lemma 2.1 ([4, p. 91 and p. 97]). For any integers m and n, we have
(1) m+n ( 1) m—n — =L F’n:

(2) m+n ( 1) m—-n — =F Ln7

(3) Lygn — (— l)an n=050F,F,,

(4) m+n ( ) m—n — L L

Proof of Theorem 1.1. (1) Applying the identities in Lemma 2.1(1) and (2), we
obtain

Zmi (LkiFk + (mLy — Q)Fki+k>
i=0

= Zmi<(Fm+k — (=1)*Fyi—g) + (mLy — 2)Fki+k~>

n

Zm ( (Fritk + (=1)"Frii) +mLkai+k)
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m*(—Fy; L +mLy Flivr)

|

=0
n+1
= 1= YA Yt
= m"HLkaan.

(2) Using Lemma 2.1(3) and (4), we compute

Zm (5Fka + (mLy — Q)Lkz+k)
1=0

= Zm ( Liiyr — (=1)"Lyi—x) + (mLy, — 2>Lki+k)
1=0

= Zm ( (Lkivk + (=1)"Lii—x) + mLkLki+k)

N
Il
=)

m*(—Lypi Ly + mLyLyiyr)

n n
= Lk< — Z miL;”- + Z mlLkz)
=0 =1

= m”HLkLkn_s_k — 2Lk

Il

s
I
o

(3) By Lemma 2.1(1) and (2), we have

Z(*l) (sz+2k + (=1)%Fy; + mLkaz)
i=0
n
Z(—l) (FritrLi +mLyFy;)
1=0
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(4) From Lemma 2.1(1) and (2), we derive

(5Fm+ka + (mLy +2(— )k)Lkz)
= Z m"” Z(Lkz+2k — (=1)*Lyi + (mLi + 2(—1)k)Lki>
(

= Vim"H( Liigor + (=1)% Ly, +mLkLm)

=0
Z(_l)i "Ly Ly +mLyLy;)

n+1
— Lk( mn— Z+1Lk2+z z mn— 2+1Lm)
=1
= k( )" Li(ng1) +m" Lo)
= k( )" Licnyk + 2m"+1) 0

3. Some additional identities

Theorem 3.1. Let k and n be nonnegative integers and let m be a real number.
Then we obtain

(1) If m # 1, then

Z(—l)kimi(%(i#) — (=1)*mLigi—t12)¢) Fritk

n
(2) Z(_l)lek(i7t+1)Fk(i+1)

(=D k
= 5E (Lk(t7n72)Fk:(n+1) = (=1D)%(n+ 1)LkiFk)~
Proof. Using Lemma 2.1(1) and (2), we obtain
LitFr, — Lg(t—i) Fritk
= (Frerk — (=) Fra—r) = (Freqr — (1) Fry_oik)
= (—D)" Y Fr—p — (= 1) Frp—oni—x)

= (=" Ly pi— Frs.-



FIBONACCI-LUCAS RELATIONS 93

Now we compute

n

> m! (thFk + (=1)*mLy—i) — Lk(tfi))FkiJrk)
i=0

= Zmi(—l)kH(LkaFka —mLy—i—2)Frivk)
=0

= (—1)FH (Z ' Ly ik Fri — Zmi+1th—ki—2kai+k>

=0 i=0
n n+1
k1 ; ;
= (=D Y m Lir—piorFri — Y m' Lit—pi—rFhi
i=0 i=1

= (=) m™ " Ly (- n—2) Fr(nt1)-

Since L_j, = (—1)* Ly for any integer k, it follows that

mi((_l)kt—ki—kmLk(i_t+2) _ (_]—)k(t_i)Lk(i—t))Fki+k
i=0

= (=1 m" M Li—n—2)Fins1) — ZmithFk

=0
and
n . .
> (=D)Fmi (mLyg—er2) = (—=1)* Ligi—t)) Frit
1=0
= (=D)*m"™ Ly—n—2) Fr(nar) — (=D mi Ly Fy..

i=0
If m = 1, then the left-hand side becomes

n

Z(*l)ki(Lk(i—t) — (=) Lyi—t42)) Fritn
1=0

n

= Z(_l)ki5Fkai—kt+kai+k-
i=0
and the right-hand side becomes
(=D Ligr—n—2)Fr(ns1) — (1) ¥(n + 1) Ly; Fy.
If m # 1, then we have

n

Z(_l)kimi(Lk(i—t) — (1) *mLy(—t42)) Fritr
=0

kt n+1 k m"t? —1
= (—1) m Lk(t,n,Q)Fk(nJrl) - (—1) LkiFkﬁ .
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Theorem 3.2. Let iq,i2,...,4, k,n be nonnegative integers and let m be a
real number. Then

n
> (mir(L’mF’“ = 2P ) + ) (mi"”(Lkirlek = 2Fki, k) +

i-=0 ipr—1=0

13 12
+ Z (mlz(Lking — 2Fkiy k) + Z m" (L, Fy + (m Ly, — 2)Fki1+k)) o ))

i2=0 i1=0

1
= m"+ Lkan+k-

Proof. By Theorem 1.1(1), we obtain

S° (' (L P = 2Fiin) + 30 (' (D P = 2Bk, i) +

in=0 ip_1=0

13 2
+ Z (m”(Lkisz = 2Fkiy k) + Z m" (Lyi, Fy + (mLy, — Q)Fki1+k)) : ))

i2=0 i1=0
= > (mz (L, Bl = 2F000) + 3 (mi"”(Lku_le = 2Fyi, k) +
i-=0 ir—1=0

13
+ 3 (" (L P = 2Bk a) + m LB, ) - )

ia=0
= Z (m“ (Lii, Fre — 2Fpi, 1) + Z <mi“1(Lki,.,1Fk = 2Fpi, k) +
=0 ir_1=0

i3
+ Z M (Liiy By + (mLg — 2) Friy 1) - - ))
i2=0

n

= Z (m“ (LkiTFk — 2Fkir+k) + mir+1LkaiT+k>

=0

= Z m'" (Lyi, Fr + (mLg — 2) Fli 1 1)

ir=0
1
= mnt Ly Fintk- O

Taking m = 2 and k = 1 in Theorem 1.1(2), we easily obtain a result similar
to the identity of Benjamin and Quinn.

Lemma 3.3.

, 1
§ 2F, = 5(2"+1Ln+1 —-2).
1=0
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Using the above lemma and Benjamin—Quinn’s identity, we can prove the
following.

Theorem 3.4. Let n and k be nonnegative integers. Then
(1) o2 (F’“Li +(2FLy - 2)Fi+k) =Lenthtip, g — 2" L, —
2Ly, +2),
(2) 3, 20 (5FkFZ- + (28D — 2)Li+k) = L (2R, ey — 27 R, —
2k ).
Proof. (1) By Lemma 2.1(1) and (2), we have
FyL; — 2F; 1 = Fipg, — (“1)"F,_y, — 2F; 14,
= —(Fipn + (1" Fi—y)
= —LiF;.
Using Lemma 3.3, we compute

n
Z 2! (FkLi + (2FLy, - Q)Fi+k)
=0

= Z 2/ (—LiF; + 2F Ly Fip)
i=0

=Ly ( 2": 27 F e — z”: Qin')
:Lj(;c k—1 = n
LY 2F-Y 2R - 2R)
i=0 i=0 i=0

L
_ ?k(QnJrlvHLTH_k_H o 2n+1Ln+1 _ QkLk + 2)

(2) Similarly, we obtain
5FpF; — 2Ljys = Lyt — (=1)' Ly — 2Ly

= —(Lpyi 4+ (—=1)"Ly—s)
— _IL,L;

and hence we get

Yo (5FkFl- +(2FLy — 2)Li+k>
=0

n
= Z 2(—LyL; + 2" Ly Liy;)
1=0

= Ly, ( z": PARRS PR Zn: 21L¢)

=0 =0
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n+k k—1 n
— L ( N2 -3 2L -y 2iLi)
1=0 1=0 =0
= Lpy(2" TP E e — 28, — 2" TR ). 0

References

[1] A. T. Benjamin and J. J. Quinn, Fibonacci and Lucas identities through colored tilings,
Util. Math. 56 (1999), 137-142.

[2] S. D. Dafnis, On the relation between Fibonacci and Lucas numbers, Fibonacci Quart.
58 (2020), no. 5, 111-114.

[3] T. Edgar, Eztending some Fibonacci-Lucas relations, Fibonacci Quart. 54 (2016), no. 1,
79.

[4] T. Koshy, Fibonacci and Lucas Numbers with Applications. Vol. 2, Pure and Applied
Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2019.

[5] D. Marques, A new Fibonacci-Lucas relation, Amer. Math. Monthly 122 (2015), no. 7,
683. https://doi.org/10.4169/amer .math.monthly.122.7.683

JUNGHYUN HONG
GOCHON MIDDLE SCHOOL
GIiMPO-SI 10124, KOREA

JONGMIN LEE
HANSU MIDDLE SCHOOL
GOYANG-sI 10384, KOREA

Ho PARK

DEPARTMENT OF MATHEMATICS
DoNGGUK UNIVERSITY

SEOUL 04620, KOREA

Email address: ph1240@dongguk . edu


https://doi.org/10.4169/amer.math.monthly.122.7.683

