
Commun. Korean Math. Soc. 38 (2023), No. 1, pp. 21–38

https://doi.org/10.4134/CKMS.c210349

pISSN: 1225-1763 / eISSN: 2234-3024

THE HOMOLOGY REGARDING TO E-EXACT SEQUENCES

Ismael Akray and Amin Mahamad Zebari

Abstract. Let R be a commutative ring with identity. Let R be an inte-

gral domain and M a torsion-free R-module. We investigate the relation

between the notion of e-exactness, recently introduced by Akray and Ze-
bari [1], and generalized the concept of homology, and establish a relation

between e-exact sequences and homology of modules. We modify some
applications of e-exact sequences in homology and reprove some results

of homology with e-exact sequences such as horseshoe lemma, long exact

sequences, connecting homomorphisms and etc. Next, we generalize two
special drived functor Tor and Ext, and study some properties of them.

1. Introduction

Throughout this article, R will denote an integral domain, M a unitary
torsion-free R-module. Here we use monic and epic to denote a monomorphism
and an epimorphism, respectively. The homology concept has had a long and
varied history. In [4], Weibel Charles described this history which is started in
the nineteenth century, via the work of Riemann (1857) and Betti (1871) on
homology numbers. The concept of essential exact sequences was introduced
by Akray and Zebari [1] as a generalization to the notion of exact sequences of
modules. They introduced the e-exact sequence of a module and proved some
results in module theory and they arose two questions. Here we try to answer
question one which is stated:

Question 1. One can use the above two definitions to redefine the homol-
ogy, using the left e-exact functors Hom(M,−), Hom(−,M) and right e-exact
functor M ⊗− to define their derived functors and study properties of them.

In this paper, we generalized the concept of homology and establish a rela-
tionship between e-exact sequences and the homology. We prove some results
of homology with an e-exact sequence such as horseshoe lemma, long exact se-
quence, connecting homomorphism, etc. Finally, we redefine the drive functor
with e-exact sequences and discuss two special drive functors Tor and Ext.
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A complex or chain complex A is a sequence of R-modules and maps

A : · · · // An+1

dn+1
// An

dn // An−1
// · · · , n ∈ Z ,

with dndn+1 = 0 for all n. We will write (A, d) instead of A. The nth homol-
ogy R-module is defined to be Hn(A) = Ker(dn)/Im(dn+1). The elements of
An are called n-chains, the elements of Ker(dn) are called n-cycles, and the
elements of Im(dn+1) are called n-boundaries and we symbolize by Ker(dn) =
Zn(A) = Zn, Im(dn+1) = Bn(A) = Bn, and thus Hn(A) = Zn(A)/Bn(A)
[3, p. 169].

2. Preliminaries

In this section, we list some basic concepts and well-known results on e-exact
sequences and essential submodule of/in modules which are mainly taken from
[1] and [2].

Definition 1 ([2]). Let M be an R-module. Then a submodule N of M is
called an essential submodule in M if the intersection of N with every non-zero
submodule of M is not equal to zero and we denoted by N ≤e M .

Equivalently, N is an essential submodule of M if N∩Rx 6= 0 for all non-zero
element x ∈M ([2, p. 75]).

Definition 2 ([1]). A sequence of R-modules and R-morphisms

· · · // Ai−1

fi−1
// Ai

fi // Ai+1
// · · ·

is said to be e-exact at Ai if Im(fi−1) ≤e Ker(fi), and it is said to be e-exact
sequences if it is e-exact at each Ai. Moreover, a sequence of R-modules and
R-morphisms

0 // A1
f1 // A2

f2 // A3
// 0

is called a short e-exact sequence if and only ifKer(f1) = 0, Im(f1) ≤e Ker(f2)
and Im(f2) ≤e A3.

In the following, we have an example which is an e-exact sequence but not
exact that show the class of all e-exact sequences is larger than the class of
exact sequences.

Example 2.1. Consider the short e-exact sequence

0 // 4Z
f1 // Z

f2 // Z/4Z // 0

we define f1 and f2 as f1(4n) = 2n and f2(n) = 2n + 4Z. But f2 is not epic,
the sequence is not exact.
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A functor F is called covariant left e-exact if for every short e-exact sequence

0 // A1
f1 // A2

f2 // A3
// 0 , the sequence

0 // F (A1)
F (f1)

// F (A2)
F (f2)

// F (A3)

is e-exact and called covariant right e-exact if the sequence

F (A1)
F (f1)

// F (A2)
F (f2)

// F (A3) // 0

is e-exact whenever 0 // A1
f1 // A2

f2 // A3
// 0 is e-exact. A func-

tor F is called a covariant e-exact functor if it is both covariant left e-exact
functor and covariant right e-exact functor.

A functor F is called contravariant left e-exact if for every short e-exact

sequence 0 // A1
f1 // A2

f2 // A3
// 0 , the sequence

0 // F (A3)
F (f2)

// F (A2)
F (f1)

// F (A1)

is e-exact.

Theorem 2.2 ([1]). The sequence of R-modules and R-morphisms

0 // A1
f1 // A2

f2 // A3

is e-exact if and only if for all R-module B, the sequence

0 // Hom(B,A1)
f1
∗
// Hom(B,A2)

f2
∗
// Hom(B,A3)

is e-exact.

Theorem 2.3 ([1]). If a sequence of R-modules and R-morphisms

A1
f1 // A2

f2 // A3
// 0

is e-exact, then for all torsion-free R-module B, the sequence

0 // Hom(A3, B)
f2
∗
// Hom(A2, B)

f1
∗
// Hom(A1, B)

is e-exact. The converse is true if A3/Im(f2) and A2/Im(f1) are torsion-free
R-modules.

Theorem 2.4 ([1]). Let A1
f1 // A2

f2 // A3
// 0 be an e-exact sequence.

Then for any torsion-free R-module B, the sequence

A1 ⊗B
f1⊗1

// A2 ⊗B
f2⊗1

// A3 ⊗B // 0

is e-exact.
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Definition 3 ([1]). We say that an R-module P is e-projective if satisfies
the following condition: for any e-epic map f1 : A1 → A2, and any map
f2 : P → A2, there exist 0 6= r ∈ R and f3 : P → A1 such that f1f3 = rf2:

P

f2
��

f3

}}

A1
f1 // A2

// 0

Definition 4 ([1]). An e-projective resolution of an R-module A is an e-exact
sequence

· · · // Pn+1
// Pn // · · · // P1

// P0
// A // 0

in which each Pn is e-projective.

Dually, we can define e-injective resolution as follows.

Definition 5 ([1]). An e-injective resolution of an R-module A is an e-exact
sequence

0 // A // E0 // E1 // · · · // En // En+1 // · · ·

in which each En is injective.

3. E-exact sequences and homology

In this section, we have the applications of e-exact sequences in homology
and prove some results of homology with e-exact sequences.

Theorem 3.1 (Connecting homomorphism with e-exact sequence). Let

0 // A′
i // A

p
// A′′ // 0

be an e-exact sequence of complexes. Then for each non-negative integer number
n, there is a homomorphism

σn : Hn(A′′)→ Hn−1(A′)

defined by:

z′′n +Bn(A′′) 7→ i−1
n−1dnp

−1
n (rz′′n) +Bn−1(A′),

where r ∈ R.

Proof. Consider the commutative diagram:

0 // A′n
in //

d′n
��

An

dn

��

pn // A′′n

d′′n
��

// 0

0 // A′n−1

in−1
// An−1

pn−1
// A′′n−1

// 0
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Suppose that z′′n ∈ A′′n with d′′n(z′′n) = 0. Since Im(pn) ≤e A′′n, there exist
an ∈ An and 0 6= r ∈ R such that pn(an) = rz′′n. Also, by commutativity of
the diagram

pn−1dn(an) = d′′npn(an) = d′′n(rz′′n) = rd′′n(z′′n) = 0.

That means dn(an) ∈ Ker(pn−1), as Im(in−1) ≤e Ker(pn−1) and in−1 is
monic, there exist 0 6= s ∈ R and unique a′n−1 ∈ A′ such that in−1(a′n−1) =
sdn(an). Let we lifted z′′ to ān ∈ An. Similarly, we have a unique ā′n−1 ∈ A′n−1

and 0 6= s̄ ∈ R such that i(ā′n−1) = s̄dn(ān). It is clear that

pn(an − ān) = pn(an)− pn(ān) = rz′′n − rz′′n = 0.

Then an−ān ∈ Ker(pn) and by e-exactness of the top row there exists x′n ∈ A′n
such that an − ān = d′n(x′n) ∈ Bn−1(A′). Hence the R-morphism defined by

Zn(A′′) −→ A′n−1/Bn−1(A′)

is well-defined. Since Im(dn+1) ⊂ Ker(dn), then this map sends the element
of Bn(A′′) into Bn−1(A′) and that i−1

n−1dp
−1
n (rz′′) = a′n−1 is a cycle. Therefore

the map σn : Hn(A′′)→ Hn−1(A′) is well-defined. �

In the next, we have one of the important theorems of homology we prove
with e-exact sequences.

Theorem 3.2 (Long e-exact sequence). Let

0 // A′
i // A

p
// A′′ // 0

be an e-exact sequence of complexes. Then there is a long e-exact sequence of
R-modules and R-morphisms

· · · // Hn(A′)
in∗ // Hn(A)

pn∗ // Hn(A′′)
σn // Hn−1(A′)

in−1∗
// Hn−1(A) // · · · .

Proof. First, to show that Im(in∗) ≤e Ker(pn∗). Let x be a non-zero element
of Ker(pn∗). Since x ∈ Hn(A), so x = zn + Bn, where zn ∈ Ker(dn) and
Bn = Im(dn+1). That is pn∗(x) = pn∗(zn + Bn) = 0 and pn(zn) + B′′n = B′′n.
Then pn(zn) ∈ B′′n and pn(zn) = d′′n+1(a′′), where a′′ ∈ A′′n+1. By assumption,
we have Im(pn+1) ≤e A′′n+1, so there exist 0 6= r ∈ R and a ∈ An+1 such that
pn+1(a) = ra′′ 6= 0. Also,

pn(rzn) = rpn(zn) = rd′′n+1(a′′) = d′′n+1(ra′′) = d′′n+1pn+1(a) = pndn+1(a).

It means that pn(rzn − dn+1(a)) = 0 and rzn − dn+1(a) ∈ Ker(pn). By
hypotheses and as Im(in) ∩R(rzn − dn+1(a)) 6= 0, then there exist 0 6= s ∈ R
and a′ ∈ A′n such that in(a′) = s(rzn− dn+1(a)) 6= 0. By monicness of in−1 we
can check that a′ ∈ Ker(d′n) = Z ′n.

in−1d
′
n(a′) = dnin(a′) = dn(srzn − sdn+1(a))

= srdn(zn)− sdndn+1(a) = 0.
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Now we get:

in∗(a
′ +B′n) = in(a′) +Bn = srzn − sdn+1(a) +Bn

= srzn +Bn = sr(zn +Bn) = sr(x) 6= 0.

Since Hn(A) has no zero divisors on R, we have Im(in∗) ∩Rx 6= 0.
Second, to prove that Im(pn∗) ≤e Ker(σn). Suppose that x is a non-zero

element of Ker(σn). Then x = z′′n + B′′n, where z′′n ∈ Ker(d′′n) and B′′n =
Im(d′′n+1). That is σn(x) = 0 and σn(z′′n + B′′n) = B′n−1. By Theorem 3.1

we have i−1
n−1dnp

−1
n (rz′′n) + B′n−1 = B′n−1, where r ∈ R and B′n−1 = Im(d′n).

Which implies that i−1
n−1dnp

−1
n (rz′′n) ∈ B′n−1. There exists a′ ∈ A′n such that

i−1
n−1dnp

−1
n (rz′′n) = d′n(a′), so that dnp

−1
n (rz′′n) = in−1d

′
n(a′) = dnin(a′). Thus

dn(p−1
n (rz′′n − in(a′))) = 0, and we get p−1

n (rz′′n − in(a′)) ∈ Ker(dn). Therefore

pn∗(p
−1
n (rz′′n)− in(a′) +Bn) = pnp

−1
n (rz′′n)− pnin(a′) +B′′n = z′′n +B′′n = x 6= 0.

Hence Im(p∗) ∩Rx 6= 0.
Finally, to show that Im(σn) ≤e Ker(in−1∗). Let x be a non-zero ele-

ment of Ker(in−1∗) and x = z′n−1 + B′n−1, where z′n−1 ∈ Ker(dn−1) and
B′n−1 = Im(d′n). That is in−1∗(x) = 0 and in−1∗(z

′
n−1 + B′n−1) = Bn−1.

Which implies that in−1(z′n−1) +Bn−1 = Bn−1. It means in−1(z′n−1) ∈ Bn−1,
where Bn−1 = Im(dn). Then there exists a ∈ An such that in−1(z′n−1) =
dn(a). But d′′npn(a) = pn−1dn(a) = pn−1in−1(z′n−1) = 0. From thus, we get

pn(a) ∈ Ker(d′′n) = Z ′′n . Therefore σn(pn(a) +B′n) = i−1
n−1dnp

−1
n pn(ra) +B′ =

i−1
n−1dn(ra) +B′ = ri−1

n−1in−1(z′n−1) +B′ = r(z′n−1 +B′n−1) = rx, where r ∈ R.
Hence Im(σ) ∩Rx 6= 0 and we have Im(σ) ≤e Ker(i∗). �

Remark 3.3 (Naturality of σ with e-exact sequence). Consider the commutative
diagram of complexes with e-exact rows:

0 // A′
i //

f
��

A

g

��

p
// A′′

h
��

// 0

0 // B′
j
// B

q
// B′′ // 0

Then there is a commutative diagram of R-modules and R-morphisms with
e-exact rows:

· · · // Hn(A′)
i∗ //

f∗

��

Hn(A)

g∗

��

p∗ // Hn(A′′)

h∗
��

σ // Hn−1(A′)

f∗

��

// · · ·

· · · // Hn(B′)
j∗ // Hn(B)

q∗ // Hn(B′′)
σ′ // Hn−1(B′) // · · ·

The proof of this is easy. Since by Theorem 3.2 the rows are e-exact. Also, Hn

is a functor and using Theorem 3.1 we get each square is commute.
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Definition 6. For any diagram of R-modules and R-morphisms, the triangle

A1
f1 //

f2

��

A2

B1

f3

>>

is e-commute if and only if there exists 0 6= r ∈ R such that f3 ◦f2 = rf1. Also,
the diagram

A1
f1 //

t1

��

A2

t2

��

B1
g1 // B2

is e-commute if and only if there exists 0 6= r ∈ R such that g1 ◦ t1 = r(t2 ◦ f1).
That is, the diagram is e-commutative if each of its triangles and squares is
e-commute.

Definition 7. Let f, g : A −→ B be chain maps. Then f is e-homotopic to g
if there are maps sn : An −→ Bn+1 and non-zero elements r, p and q in R such
that

r(fn − gn) = p(d′n+1sn) + q(sn−1dn) for all n.

Theorem 3.4. If f, g : A −→ B are e-homotopic chain maps, then

f∗ = g∗ : Hn(A) −→ Hn(B)

for all integer number n.

Proof. We have to show that f∗(zn + Bn(A)) = g∗(zn + Bn(A)) for all zn +
Bn(A) ∈ Hn(A). Since rf(zn) − rg(zn) = r(f − g)(zn) and by definition
of e-homotopic we have rf(zn) − rg(zn) = p(d′n+1sn)(zn) + q(sn−1dn)(zn) =
d′n+1sn(pzn) ∈ Bn(B). Therefore r(f(zn) − g(zn)) + Bn(A) = Bn(B). Hence
f∗(zn +Bn(A)) = g∗(zn +Bn(A)). �

Theorem 3.5 (Comparison Theorem with e-exact sequence). Consider the
diagram

· · · // X2
d2 //

��

X1

��

d1 // X0

��

σ // A

f

��

// 0

· · · // X ′2
d′2 // X ′1

d′1 // X ′0
σ′ // A′ // 0

where the top row is e-projective resolution and the bottom row is e-exact se-
quences. Then there is a chain map f̄ : XA −→ X ′A′ (the dashed arrows)
making the completed diagram e-commute. Moreover, any two such maps are
e-homotopic.
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Proof. By induction on n, if n = 0, then we have the diagram:

X0

fσ

��

X ′0
σ′ // A′ // 0

Since X0 is e-projective and σ′ is e-epic, then there exist f̄0 : X0 −→ X ′0 and a
non-zero element r ∈ R such that σ′f̄0 = rfσ. For the indicative step, consider
the diagram:

Xn+1

f̄ndn+1

��

X ′n+1

d′n+1
// Ker(d′n) // 0

which is defined when Im(f̄ndn+1) ⊂ Ker(d′n). To prove this, suppose that
x′n ∈ Im(f̄ndn+1). Then, there exists xn+1 ∈ Xn+1 such that f̄ndn+1(xn+1) =
x′n. Also, we have

d′n(x′n) = d′nf̄ndn+1(xn+1) = rf̄n−1dndn+1(xn+1) = 0.

By e-exactness of the bottom row, we have Im(d′n+1) ≤e Ker(d′n) and as Xn+1

is e-projective, there exist rn ∈ R and f̄n+1 : Xn+1 −→ X ′n+1 such that

d′n+1f̄n+1 = rnf̄ndn+1.

Now, to show the uniqueness of f̄ up to e-homotopy, suppose that h : XA −→
X ′A′ is a second chain map satisfying σ′h0 = rfσ. We construct an e-homotopy
s by induction. We define s−1 : X−1 −→ X ′0 as the zero map (there is no choice
here, because X−1 is zero). For the inductive step (and also for s0). Now, we
want to show that Im(r(hn+1− f̄n+1)−r′psndn+1) ⊂ Ker(d′n+1), where r, r′, q
and p are non-zero elements of R. Then

d′n+1(r(hn+1 − f̄n+1)− r′psndn+1)

= d′n+1r(hn+1 − f̄n+1)− d′n+1(r′psndn+1)

= d′n+1r(hn+1 − f̄n+1)− r′(r(hn − f̄n)− qsn−1dn)dn+1

= d′n+1r(hn+1 − f̄n+1)− r′r(hn − f̄n)dn+1 − r′p(sn−1dn)dn+1

= d′n+1r(hn+1 − f̄n+1)− d′n+1r(hn+1 − f̄n+1)

= 0,

where d′n+1(hn+1 − f̄n+1) = r′(hn − f̄n)dn+1. Therefore, we have the diagram:

Xn+1

r(hn+1−f̄n+1)−r′psndn+1

��

X ′n+2

d′n+2
// Ker(d′n+1) // 0
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Since Xn+1 is e-projective, there exist a map sn+1 and r′′ ∈ R such that

d′n+2sn+1 = r′′(r(hn+1 − f̄n+1)− r′psndn+1).

Therefore

r′′r(hn+1 − f̄n+1) = d′n+2sn+1 + r′′r′psndn+1.

Hence f and h are e-homotopic. �

The dual of this theorem is true for e-injective resolution.
The Akray and Zebari generalized 3×3 lemma with e-exact rows and columns

[1]. In the following, we have a generalize of 3 × 3 lemma where the diagram
is e-commute, the rows and columns are e-exact sequences. We use it to prove
the next results.

Theorem 3.6 (3 × 3 lemma with e-commute). Consider the e-commutative
diagram of R-modules and R-morphisms:

0

��

0

��

0

��

0 // A1

i1

��

f1 // A2

j1

��

f2 // A3
//

p1

��

0

0 // B1
g1 //

i2

��

B2
g2 //

j2

��

B3
//

p2

��

0

0 // C1
h1 //

��

C2
h2 //

��

C3
//

��

0

0 0 0

If the columns and the two bottom rows are e-exact, then the top row is also
e-exact.

Proof. To prove that the top row is e-exact we have to check the following three
conditions:

(1) Let a1 ∈ Ker(f1). Then g1i1(a1) = rj1f1(a1) = 0, where r ∈ R and
so i1(a1) ∈ Ker(g1). Since g1 and i1 are monic, then the result follows that
a1 = 0. Therefore Ker(f1) = 0.

(2) To prove that Im(f1) ≤e Ker(f2). We must to show that Im(f1) ⊆
Ker(f2). Let a2 ∈ Im(f1). Then, there exists a1 ∈ A1 such that f1(a1) = a2

and by e-commutative of the diagram there exists 0 6= r ∈ R such that
g1i1(a1) = rj1f1(a1) = rj1(a2), which implies that rj1(a2) ∈ Im(g1) ⊆ Ker(g2)
and 0 = rg2j1(a2) = rr′p1f2(a2), where r′ ∈ R. Hence rr′f2(a2) ∈ Ker(p1) = 0
and Ker(p1) is a torsion-free module. Therefore f2(a2) = 0. Now to prove
that Im(f1) is an essential submodule of Ker(f2). Let a2 be a non-zero ele-
ment of Ker(f2). Then g2j1(a2) = rp1f2(a2) = 0 with r ∈ R. So j1(a2) ∈
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Ker(g2) and as Im(g1) ≤e Ker(g2), there exist 0 6= s ∈ R and b1 ∈ B1

such that g1(b1) = sj1(a2). Also h1i2(b1) = r′j2g1(b1) = r′sj2j1(a2) = 0,
where r′ ∈ R. Thus i2(b1) ∈ Ker(h1) = 0. By e-exactness of first column
we have Im(i1) ∩ Rb1 6= 0. Then, there exist a1 ∈ A1 and k ∈ R such
that i1(a1) = kb1 and by e-commutative of the diagram ksj1(a2) = kg1(b1) =
g1(kb1) = g1i1(a1) = r′′j1f1(a1) with r′′ ∈ R. Thus j1(ksa2−r′′f1(a1)) = 0 and
as Ker(j1) = 0, Then ksa2 = f1(r′′a1). Therefore we have Im(f1) ≤e Ker(f2).

(3) Let a3 be a non-zero element of A3. So there exist b2 ∈ B2 and s ∈ R such
that g2(b2) = sp1(a3). By e-commutative of the diagram there exists r ∈ R with
h2j2(b2) = rp2g2(b2) = rsp2p1(a3) = 0. Which implies that j2(b2) ∈ Ker(h2)
and by e-exactness of the bottom row, there exist c1 ∈ C1 and n ∈ R such
that h1(c1) = nj2(b2). Again by e-exactness of the first column there exist
m ∈ R and b1 ∈ B1 such that i2(b1) = mc1. Using the e-commutativity, we
have mnj2(b2) = mh1(c1) = h1(mc1) = h1i2(b1) = r′j2g1(b1), where r′ ∈
R. Therefore j2(r′g1(b1) − mnb2) = 0, so r′g1(b1) − mnb2 ∈ Ker(j2). Since
Im(j1) ≤e Ker(j2), there exist a2 ∈ A2 and 0 6= k ∈ R such that j1(a2) =
k(r′g1(b1)−mnb2). By hypotheses and e-commute of the diagram, we have

−kmnsp1(a3) = −kmng2(b2) = kr′g2g1(b1)− kmng2(b2)

= g2(k(r′g1(b1)−mnb2))

= g2j1(a2) = r′′p1f2(a2).

This is equivalent to p1(r′′f(a2)+kmns(a3)) = 0. But p1 is monic, so f(r′′a2) =
−kmns(a3). Hence Im(f2) ≤e A3. �

Theorem 3.7 (Horseshoe lemma with e-exact sequence). Consider the dia-
gram of R-modules and R-morphisms:

�� ��

P ′1

d′1
��

P ′′1

d′′1
��

P ′0

σ′

��

P ′′0

σ′′

��

0 // A′
i
//

��

A
p
// A′′ //

��

0

0 0

where the columns are e-projective resolutions and the row is e-exact. Then
there exist an e-projective resolution of A and a chain R-maps so that the
columns form an e-exact sequence of complexes.
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Proof. By induction on n it suffices to complete 3 × 3-diagram. Consider the
diagram:

0

��

0

��

K ′0

��

K ′′0

��

P ′0

σ′

��

P ′′0

σ′′

��

0 // A′
i
//

��

A
p
// A′′ //

��

0

0 0

where K ′0 = Ker(σ′) and K ′′0 = Ker(σ′′). Then the rows and columns are e-
exacts. Since P ′0 and P ′′0 are e-projective, we define P0 = P ′0⊕P ′′0 , i0 : P ′0 −→ P0

by x′ 7→ (x′, 0), and p0 : P0 −→ P ′′0 by (x′, x′′) 7→ x′′. Since P0 is sum of two
e-projective, then it is also e-projective. It is clear

0 // P ′0
i0 // P0

p0 // P ′′0 // 0

is an e-exact sequence. Since P ′′0 is e-projective, there exist a map h : P ′′0 −→ A
and r ∈ R such that ph = rσ′′. Now we define σ : P0 −→ A by

σ : (x′, x′′) 7→ iσ′(x′) + h(x′′).

We take K0 = Ker(σ), then the diagram is e-commute and columns are e-
exact. Also the two bottom rows are e-exact. Then by Theorem 3.6 the top
row is also e-exact. �

The dual of Theorem 3.7 is true for e-injective resolution.

4. E-derived functors

Let T be a functor between categories of R-modules. In this section, we
want to describe its left and right e-derived functors on the e-projective and
e-injective resolutions.

Definition 8. For each R-module A, its left e-derived functors are defined by

(LnT )A = Hn(TPA) = Ker(Tdn)/Im(Tdn+1),

where

P : · · · // P2
d2 // P1

d1 // P0
// A // 0

is the e-projective resolution of A chosen once for all.
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Definition 9. If T is a covariant functor, its right e-derived functors RnT are
defined on an R-module A by

(RnT )A = Hn(TEA) = Ker(Tdn)/Im(Tdn−1),

where

E : 0 // A // E0 d0 // E1 d1 // E2 // · · ·
is the e-injective resolution of A chosen once for all. Also, we used a convenient
notation for the e-injective resolution.

(RnT )A = H−n(TEA) = Ker(Td−n)/Im(Td−n+1).

Definition 10. If T is a contravarint functor, then

(RnT )A = Ker(Tdn+1)/Im(Tdn),

where

P : · · · // P2
d2 // P1

d1 // P0
// A // 0

is the e-projective resolution of A chosen once for all.

We need the next results to make the definitions of left and right e-derived
functors well-defined. We prove these definitions are independent of the choice
of e-projective resolutions and e-injective resolutions.

Theorem 4.1. For a functor T , left e-derived functors are additive functors
for every n.

Proof. Let f : A −→ B be a map. Then by Theorem 3.5 there is a chain
map f̄ : PA −→ PB , where PA and PB are deleted complexes of e-projective
resolutions for A and B, respectively. To prove that (LnT )f is well-defined for
all integer numbers n. Suppose that h : PA −→ PB is a second chain map
over f . Then by Theorem 3.5 again we have f̄ and h are e-homotopic, and T f̄
and Th are also e-homotopic. By Theorem 3.4 we can say that (T f̄)∗ = (Th)∗.
Now, to prove that LnT is additive functor for all n. We have (LnT )(f + g) =
Hn(T (f + g)) = Hn(Tf + Tg) = Hn(Tf) + Hn(Tg) = (LnT )f + (LnT )g.
Therefore left e-derived functors are additive functors for every n. �

Theorem 4.2. For any functor T , the left e-derived functors LnT and L̂nT
are naturally equivalent. In particular for each A,

(LnT )A ∼= (L̂nT )A.

Proof. Let

P : · · · // P2
// P1

// P0
// A // 0

be an e-projective resolution for A that used to define LnT . Let

P̂ : · · · // P̂2
// P̂1

// P̂0
// A // 0
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be another e-projective resolution for A. It used to define L̂nT . Consider the
diagram

· · · // P2
// P1

// P0
σ // A

1A

��

// 0

· · · // P̂2
// P̂1

// P̂0
σ̂ // A // 0

where 1A : A −→ A is the identity map. By Theorem 3.5 there is a chain map
i : PA −→ P̂A over 1A which is unique up to e-homotopy. When we applying a
functor T gives a chain map Ti : TPA −→ T P̂A over 1TA. Now, we symbolize
this chain map to define

τA = (Ti)∗ : (LnT )A −→ (L̂nT )A.

To prove that τA is an isomorphism, consider the diagram

· · · // P̂2
// P̂1

// P̂0
σ̂ // A

1A

��

// 0

· · · // P2
// P1

// P0
σ // A // 0

and Theorem 3.5 gives a chain map j : P̂A −→ PA over 1A. The composite
map ji : PA −→ PA and the identity chain map 1P : PA −→ PA are also
chain maps over 1A. By Theorem 3.5 ji and 1P are e-homotopic. Therefore
j∗i∗ = 1 and similarly, we have i∗j∗ = 1. That is i∗ is an isomorphism, and so
is τA = (Ti)∗.

Let f : A −→ B be a map. For natural transformation of τA we have to
prove that the diagram

(LnT )A

Tf

��

τA // (L̂nT )A

Tf

��

(LnT )B
τB
// (L̂nT )B

is commutative. From (LnT )A with clockwise direction, consider the diagram

· · · // P2
// P1

// P0
σ // A

1A

��

// 0

· · · // P̂2
// P̂1

// P̂0
σ̂ // A

f

��

// 0

· · · // Q̂2
// Q̂1

// Q̂0
σ // B // 0

by Theorem 3.5 there exists a chain map PA −→ Q̂B over f ◦1A = f . Similarly

for counterclockwise direction, we have a chain map PA −→ Q̂B over 1B ◦ f =
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f and by Theorem 3.5 these chain maps are e-homotopic. When we apply
a functor T , we get e-homotopic chain maps TPA −→ T Q̂B over Tf . By
Theorem 3.4 these two induced maps are equal. �

Theorem 4.3. If T is covariant, each right e-derived functor RnT is an ad-
ditive functor whose definition is independent of the choice of e-injective reso-
lutions. Similarly, if T is contravariant, then each right e-derived RnT is an
additive contravariant functor whose definition is independent of the choice of
e-projective resolutions.

Proof. The proof is dual to the proof of Theorem 4.2. �

Theorem 4.4. Let 0 // A′ // A // A′′ // 0 be an e-exact se-
quence of R-modules. If T is a covariant functor, there is an e-exact sequence
of R-modules

· · · // (LnT )A′ // (LnT )A // (LnT )A′′
σ // (Ln−1T )A′′ //

· · · // (L0T )A′ // (L0T )A // (L0T )A′′ // 0.

Proof. Assume that

· · · // P ′2 // P ′1 // P ′0 // A′ // 0

and

· · · // P ′′2 // P ′′1 // P ′′0 // A′′ // 0

be e-projective resolutions for A′ and A′′, respectively. Then by Theorem 3.7
we can construct an e-projective resolution

· · · // P̂1
// P̂0

// A // 0

for A. The e-exact sequence of deleting complexes is

0 // P′A′ // P̂A
// P′′A′′ // 0

and when, we applying covariant functor T we get

0 // TP′A′ // T P̂A
// TP′′A′′ // 0.

By Theorem 3.3 we have an e-exact sequence

· · · // Hn(TP′A′) // Hn(T P̂A) // Hn(TP′′A′′)
σ // Hn−1(TP′A′) // · · ·

and by the definition of left e-derived functor, we have

· · · // (LnT )A′ // (L̂nT )A // (LnT )A′′
σ // Ln−1TA

′ // · · · .
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We write (L̂nT )A instated of (LnT )A, because the e-projective resolution of
A constructed with Theorem 3.7 and which is not the originally e-projective
reticulation. But Theorem 4.2 is saying both of them are equal and we get

· · · // (LnT )A′ // (LnT )A // (LnT )A′′
σ // (Ln−1T )A′ // · · · .

Also we know that (LnT )A′ = 0 for all negative integer number n. Therefore

· · · // (LnT )A′ // (LnT )A // (LnT )A′′
σ // (Ln−1T )A′′ //

· · · // (L0T )A′ // (L0T )A // (L0T )A′′ // 0. �

Theorem 4.5. Let 0 // A′ // A // A′′ // 0 be an e-exact se-
quence of R-modules. If T is a covariant functor, there is an e-exact sequence
of R-modules

0 // (R0T )A′ // (R0T )A // (R0T )A′′
σ // (R1T )A′′ //

· · · // (RnT )A′ // (RnT )A // (RnT )A′′ // · · · .

Proof. Suppose that

0 // A′ // E′0 // E′1 // · · · // E′n // E′n+1
// · · ·

and

0 // A′′ // E′′0 // E′′1 // · · · // E′′n // E′′n+1
// · · ·

are e-injective resolutions for A′ and A′′, respectively. Then by dual of Theorem
3.7 we have

0 // A // Ê0
// Ê1

// · · · // Ên // Ên+1
// · · ·

an e-injective resolution for A such that

0 // E′A′ // ÊA
// E′′A′′ // 0

is the e-exact sequence of deleting complexes. When we applying a covariant
functor T we get

0 // TE′A′ // T ÊA
// TE′′A′′ // 0

and by Theorem 3.3 we have the e-exact sequence

· · · // Hn(TE′A′) // Hn(T ÊA) // Hn(TE′′A′′)
σ // Hn−1(TE′A′) // · · · .

Then by the definition of right e-derived e-exact functor, we have

· · · // (RnT )A′ // (R̂nT )A // (RnT )A′′
σ // (Rn−1T )A′ // · · · .
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By Theorem 4.3 for all right e-derived functor we have (R̂T )A = (RT )A.
So, we have

· · · // (RnT )A′ // (RnT )A // (RnT )A′′
σ // (Rn−1T )A′ // · · ·

and since (RnT )A = 0 for all negative integer n, we get the e-exact sequence

0 // (R0T )A′ // (R0T )A // (R0T )A′′
σ // (R1T )A′′ //

· · · // (RnT )A′ // (RnT )A // (RnT )A′′ // · · · . �

5. Functors e-Tor and e-Ext

In this section, we generalize two special derived functors Tor and Ext and
discuss some properties of them.

Recall that, for each R-module A and B we have

e− Extn(A,B) = H−n(Hom(A,EB)),

where EB is a deleted e-injective resolution of B and

e− Extn(A,B) = H−n(Hom(PA, B)),

where PA is a deleted e-projective resolution of A. Also,

e− TorRn (A,B) = Hn(PA ⊗B) = Hn(A⊗QB),

where PA and QB are deleted e-projective resolutions of A and B, respectively.

Theorem 5.1. If n is a negative integer, then e − Ext(A,B) = 0 for all
R-module A and B.

Proof. Suppose that

P : · · · // P2
// P1

// P0
// A // 0

is an e-projective resolution for A. Then the deleted complex of A is

PA : · · · // P2
// P1

// P0
// 0 .

When we apply Hom( , B) on the deleted complex we get

0 // Hom(P0, B) // Hom(P1, B) // Hom(P2, B) // · · ·

which implies that Hom(Pn, B) = 0 for all negative integer number n. Hence
e− Ext(A,B) = 0 for all negative integer number n. �

Theorem 5.2. If n is a negative integer, then e − Tor(A,B) = 0 for all R-
modules A and B.
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Proof. Let

P : · · · // P2
// P1

// P0
// B // 0

be an e-projective resolution for B. The deleted complex of B is

PB : · · · // P2
// P1

// P0
// 0.

When we apply A⊗ on the above deleted complex we get

· · · // A⊗ P2
// A⊗ P1

// A⊗ P0
// 0.

Since Hn(A ⊗ PB) = 0 for all negative integer number n. Therefore e −
Tor(A,B) = 0 for all negative integer number n. �

Theorem 5.3. If n = 0, then e− Extn(A, ) ∼= Hom(A, ).

Proof. Let

E : 0 // B
σ // E0

d0 // E−1

d−1
// E−2

// · · ·

be an e-injective resolution for B and

EB : 0
d1 // E0

d0 // E−1

d−1
// E−2

// · · ·

is an deleted e-injective resolution for B and also when we apply Hom(A, ) on
the e-injective resolution we get

0 // Hom(A,B)
σ∗ // Hom(A,E0)

d∗0 // Hom(A,E−1) // · · · .

Then e − Ext0(A,B) = H0(Hom(A,EB)) = Ker(d∗0)/Im(d∗1) = Ker(d∗0). We
define σ∗ : Hom(A,E0) −→ Ker(d∗0). Since Im(σ∗) ≤e Ker(d∗0), σ∗ is well-
defined and since Hom(A, ) is a left e-exact functor, then σ∗ is monic. Now,
we want to prove that σ∗ is epic. Let f ∈ Ker(d∗0). Then 0 = d∗0(f) = d0(f) =
d0(f(a)) for all a ∈ A therefore f(a) ∈ Ker(d0). By e-exactness of e-injective
resolution we have Im(σ) ≤e Ker(d0), so there exist b ∈ B and 0 6= r ∈ R such
that σ(b) = rf(a). We define g : A −→ B by rg(a) = b for fixed r ∈ R. Let
a1, a2 ∈ A and a1 = a2. Then rf(a1) = rf(a2) which means that σ(b) = σ(b′)
and by monicness of σ we have b = b′. Hence rg(a1) = rg(a2) and g is well-
defined. Now, we have rf(a) = σ(b) = σ(rg(a)) = rσ(g(a)) which is equivalent
to σ∗(g) = f . Hence σ∗ is an isomorphism and since e−Ext0(A,B) = Ker(d∗0).
Therefore e− Ext0(A, ) is isomorphic to Hom(A, ). �

Question 2. One can use the definition of e-exact sequences and their appli-
cation in homology to redefine the cohomology, using the e-derived functors to
discuss all five generalizations of cohomology study properties.
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