DOI QR코드

DOI QR Code

RATIONAL HOMOLOGY DISK SMOOTHINGS AND LEFSCHETZ FIBRATIONS

  • Hakho Choi (Center for Quantum Structures in Modules and Spaces Seoul National University)
  • 투고 : 2022.07.19
  • 심사 : 2022.11.08
  • 발행 : 2023.01.01

초록

In this article, we generalize the results discussed in [6] by introducing a genus to generic fibers of Lefschetz fibrations. That is, we give families of relations in the mapping class groups of genus-1 surfaces with boundaries that represent rational homology disk smoothings of weighted homogeneous surface singularities whose resolution graphs are 3-legged with a bad central vertex.

키워드

참고문헌

  1. S. Akbulut and B. Ozbagci, Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001), 319-334. https://doi.org/10.2140/gt.2001.5.319
  2. M. Bhupal and A. I. Stipsicz, Weighted homogeneous singularities and rational homology disk smoothings, Amer. J. Math. 133 (2011), no. 5, 1259-1297. https://doi.org/10.1353/ajm.2011.0036
  3. M. Bhupal and A. I. Stipsicz, Smoothings of singularities and symplectic topology, in Deformations of surface singularities, 57-97, Bolyai Soc. Math. Stud., 23, Janos Bolyai Math. Soc., Budapest, 2013. https://doi.org/10.1007/978-3-642-39131-6_2
  4. H. Choi and J. Park, A Lefschetz fibration on minimal symplectic fillings of a quotient surface singularity, Math. Z. 295 (2020), no. 3-4, 1183-1204. https://doi.org/10.1007/s00209-019-02387-6
  5. H. Endo and Y. Z. Gurtas, Lantern relations and rational blowdowns, Proc. Amer. Math. Soc. 138 (2010), no. 3, 1131-1142. https://doi.org/10.1090/S0002-9939-09-10128-4
  6. H. Endo, T. E. Mark, and J. Van Horn-Morris, Monodromy substitutions and rational blowdowns, J. Topol. 4 (2011), no. 1, 227-253. https://doi.org/10.1112/jtopol/jtq041
  7. J. B. Etnyre and B. Ozbagci, Open books and plumbings, Int. Math. Res. Not. 2006 (2006), Art. ID 72710, 17 pp. https://doi.org/10.1155/IMRN/2006/72710
  8. R. Fintushel and R. J. Stern, Rational blowdowns of smooth 4-manifolds, J. Differential Geom. 46 (1997), no. 2, 181-235. http://projecteuclid.org/euclid.jdg/1214459932
  9. R. Fintushel and R. J. Stern, Double node neighborhoods and families of simply connected 4-manifolds with b+ = 1, J. Amer. Math. Soc. 19 (2006), no. 1, 171-180. https://doi.org/10.1090/S0894-0347-05-00500-X
  10. D. Gay and T. E. Mark, Convex plumbings and Lefschetz fibrations, J. Symplectic Geom. 11 (2013), no. 3, 363-375. http://projecteuclid.org/euclid.jsg/1384282841 https://doi.org/10.4310/JSG.2013.v11.n3.a3
  11. P. Ghiggini, On tight contact structures with negative maximal twisting number on small Seifert manifolds, Algebr. Geom. Topol. 8 (2008), no. 1, 381-396. https://doi.org/10.2140/agt.2008.8.381
  12. R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. https://doi.org/10.2307/121005
  13. Y. Lee and J. Park, A simply connected surface of general type with pg = 0 and K2 = 2, Invent. Math. 170 (2007), no. 3, 483-505. https://doi.org/10.1007/s00222-007-0069-7
  14. A. Loi and R. Piergallini, Compact Stein surfaces with boundary as branched covers of B4, Invent. Math. 143 (2001), no. 2, 325-348. https://doi.org/10.1007/s002220000106
  15. J. Park, Seiberg-Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997), no. 3, 363-384. https://doi.org/10.1017/S0004972700031154
  16. J. Park, Simply connected symplectic 4-manifolds with b+2 and c21=2, Invent. Math. 159 (2005), no. 3, 657-667. https://doi.org/10.1007/s00222-004-0404-1
  17. H. Park, J. Park, and D. Shin, A simply connected surface of general type with pg = 0 and K2 = 3, Geom. Topol. 13 (2009), no. 2, 743-767. https://doi.org/10.2140/gt.2009.13.743
  18. H. Park, J. Park, and D. Shin, A simply connected surface of general type with pg = 0 and K2 = 4, Geom. Topol. 13 (2009), no. 3, 1483-1494. https://doi.org/10.2140/gt.2009.13.1483
  19. J. Park, A. Stipsicz, and Z. Szabo, Exotic smooth structures on ${\mathbb{C}}{\mathbb{P}}^2{\sharp}5{\bar{{\mathbb{C}}{\mathbb{P}}^2}}$, Math. Res. Lett. 12 (2005), no. 5-6, 701-712. https://doi.org/10.4310/MRL.2005.v12.n5.a7
  20. A. I. Stipsicz, Z. Szabo, and J. Wahl, Rational blowdowns and smoothings of surface singularities, J. Topol. 1 (2008), no. 2, 477-517. https://doi.org/10.1112/jtopol/jtn009