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MINIMAL SURFACE SYSTEM IN EUCLIDEAN FOUR-SPACE

Hojoo Lee

Abstract. We construct generalized Cauchy-Riemann equations of the

first order for a pair of two R-valued functions to deform a minimal graph

in R3 to the one parameter family of the two dimensional minimal graphs
in R4. We construct the two parameter family of minimal graphs in R4,

which include catenoids, helicoids, planes in R3, and complex logarithmic
graphs in C2. We present higher codimensional generalizations of Scherk’s

periodic minimal surfaces.

1. Introduction

Extending Bernstein’s Theorem that the only entire minimal graphs in R3

are planes, Osserman [24, Theorem 5.1] proved that any entire two dimensional
minimal graph in R4 should be degenerate, in the sense that its generalized
Gauss map lies on a hyperplane of the complex projective space CP3. Lands-
berg [15] investigated the systems of the first order whose solutions induce min-
imal varieties. The classical Cauchy–Riemann equations (fx, fy) = (gy,−gx)
satisfies the minimal surface system of the second order{

0 =
(
1 + fy

2 + gy
2
)
fxx − 2 (fxfy + gxgy) fxy +

(
1 + fx

2 + gx
2
)
fyy,

0 =
(
1 + fy

2 + gy
2
)
gxx − 2 (fxfy + gxgy) gxy +

(
1 + fx

2 + gx
2
)
gyy.

We construct the Osserman system of the first order, whose solution graphs
become degenerate minimal surfaces in R4.

Theorem 1.1 (Osserman system as a generalization of Cauchy–Riemann equa-
tions). Let

Σ =




x
y

f(x, y)
g(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω


be the graph in R4 of the pair (f(x, y), g(x, y)) of height functions defined on
the domain Ω. Let g

Σ
= Edx2 + 2Fdxdy+Gdy2 denote the induced metric on
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Σ. If the pair (f(x, y), g(x, y)) obeys the Osserman system with µ ∈ R− {0} :

(1)

[
fx

fy

]
= µ

[E
ω

F
ω

F
ω

G
ω

] [
gy

−gx

]
, or equivalently,

[
gx
gy

]
= − 1

µ

[E
ω

F
ω

F
ω

G
ω

] [
fy

−fx

]
,

where ω =
√
EG− F 2 , then the two dimensional graph Σ is minimal in R4.

The Lagrange potentials (Lemma 4.1 and Remark 4.2) on minimal graphs
in R3 play a critical role in the Jenkins-Serrin construction [11, Section 3] of
minimal graphs with infinite boundary values. We use the Lagrange potentials
to construct explicit examples of two dimensional minimal graphs in R4 and
three dimensional minimal graphs in R6.

Theorem 1.2 (Two applications of Lagrange potentials of the height functions
on minimal surfaces in R3). Let

Σ0 =


 x

y
p(x, y)

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω


be the minimal graph of the function p : Ω → R defined on a domain Ω ⊂ R2.
Let q : Ω→ R denote the Lagrange potential of p : Ω→ R such that qy

−qx

 =

 px√
1+px2+py2

py√
1+px2+py2

 .
(a) For a constant λ ∈ R − {0}, we consider the graph of the pair (f(x, y),

g(x, y)) :

Σλ =




x
y

f(x, y)
g(x, y)

 =


x
y

(coshλ) p(x, y)
(sinhλ) q(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

Then, the pair (f(x, y), g(x, y)) satisfies the Osserman system (1) in Theorem
1.1 with µ = cothλ. In particular, the graph Σλ is a minimal surface in
R4. Also, we obtain the invariance of the conformally changed induced metric

1√
det
(
g
Σλ

) g
Σλ

= 1√
det
(
g
Σ0

) g
Σ0

.

(b) For any constant λ ∈ R− {0}, the three dimensional graph


x
y
z

px + λzqx
py + λzqy

λq

 ∈ R6

∣∣∣∣∣ (x, y) ∈ Ω, z ∈ R


is minimal in R6. Moreover, it is a special Lagrangian graph in C3.
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We present examples of minimal graphs of codimension two in R4. In Exam-
ple 2.3, we construct the two parameter family of minimal graphs in R4, which
include catenoids, helicoids, planes in R3, and complex logarithmic graphs in
C2. In Example 4.7, we give a family of codimension two minimal graphs in
R4, which contains Scherk’s doubly periodic minimal graphs in R3. We present
higher codimensional generalizations of Scherk’s periodic minimal surfaces.

2. Minimal surface system in R4 and Cauchy–Riemann equations

Our ambient space is the Euclidean space R4 equipped with the flat metric
dx1

2 + dx2
2 + dx3

2 + dx4
2.

Proposition 2.1 (Two dimensional minimal graphs in R4). Let Σ be the graph

Σ =




x
y

f(x, y)
g(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

The induced metric gΣ on the surface Σ reads

gΣ = Edx2 + 2Fdxdy +Gdy2,

where the coefficients of the first fundamental form are determined by

E=Φx·Φx = 1+fx
2+gx

2, F =Φx·Φy = fxfy+gxgy, G=Φy ·Φy = 1+fy
2+gy

2.

Let ω =
√
EG− F 2. We introduce the minimal surface operator LΣ and

Laplace-Beltrami operator 4Σ acting on functions on Ω :

L
Σ

= G
∂2

∂x2
− 2F

∂2

∂x∂y
+ E

∂2

∂y2
,

(2) 4
Σ

= 4gΣ
=

1

ω

[
∂

∂x

(
G

ω

∂

∂x
− F

ω

∂

∂y

)
+

∂

∂y

(
−F
ω

∂

∂x
+
E

ω

∂

∂y

) ]
.

Then, the following three conditions are equivalent.
(a) The height functions f(x, y) and g(x, y) are harmonic on the graph Σ:

4
Σ
f = 0 and 4

Σ
g = 0.

(b) The graph Σ is minimal in R4.
(c) The height functions f(x, y) and g(x, y) solve the minimal surface system:

L
Σ
f = 0 and L

Σ
g = 0.

Proof. Though the equivalences of (a), (b), (c) are well-known, we sketch the
proof for the convenience of the readers. The equivalence of (a) and (b) follows
from [24, Equation (3.14) in Section 2], which indicates that the Euler-Lagrange
system for the area functional of the graph is

∂

∂x

(
G

ω

[
fx
gx

]
− F

ω

[
fy
gy

] )
+

∂

∂y

(
−F
ω

[
fx
gx

]
+
E

ω

[
fy
gy

] )
=

[
0
0

]
,
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which is equivalent to

4
Σ

[
fx
gx

]
=

[
0
0

]
.

There are several ways to establish the equivalence of (b) and (c): [24, Section
2, p. 16–17], [17, Section 2], [1, Section 1.2] (for arbitrary codimension), [20,
Appendix: The minimal surface system], and [7, Example 1] (for more general
ambient spaces). Here, we adopt the argument in the proof of [22, Theorem
2.2]. We use the formula (2) and introduce

(P,Q) :=

(
∂

∂x

(
G

ω

)
− ∂

∂y

(
F

ω

)
,
∂

∂y

(
E

ω

)
− ∂

∂x

(
F

ω

))
to obtain the identity for the mean curvature vector H(x, y):

H = 4
Σ


x
y

f(x, y)
g(x, y)

 =
1

ω


P
Q

Pfx +Qfy + 1
ωLΣf

Pgx +Qgy + 1
ωLΣ

g

 =
P
ω

Φx +
Q
ω

Φy +
1

ω2


0
0
LΣf
L

Σ
g

 .
First, we assume (b). Since the mean curvature vector H(x, y) vanishes on
the minimal surface, the four quantities P, Q, L

Σ
f , L

Σ
g vanish. So, (c) holds.

Second, we assume (c). Since L
Σ
f = 0 and L

Σ
g = 0, the mean curvature vector

H(x, y) is equal to the tangent vector PωΦx + Q
ω Φy. As the mean curvature

vector H(x, y) is normal to the graph Σ, H(x, y) vanishes. So, (b) holds. �

Remark 2.2 (Minimal surface operator LΣ and Laplace-Beltrami operator4Σ).
We assume that the two dimensional minimal graph Σ is minimal in R4. Then,

4Σ =
1

ω2
LΣ.

Indeed, the minimality of the graph Σ implies the two interesting identities

(3)
∂

∂y

(
F

ω

)
=

∂

∂x

(
G

ω

)
and

∂

∂y

(
E

ω

)
=

∂

∂x

(
F

ω

)
,

which imply

4Σ =
1

ω2
LΣ +

[
∂

∂x

(
G

ω

)
− ∂

∂y

(
F

ω

)]
∂

∂x
+

[
∂

∂y

(
E

ω

)
− ∂

∂x

(
F

ω

)]
∂

∂y

=
1

ω2
LΣ.

A geometric meaning of (3) is given in Rado’s book [26, p. 108]. A variational
proof of (3) can be found in Osserman’s book [24, Chapter 3]. An interpretation
of (3) (via the conjugate minimal surface) is illustrated in Remark 4.2.

Example 2.3 (Two parameter family of minimal graphs in R4 connecting
complex logarithmic graphs in C2, catenoids, and helicoids in R3). Given a
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pair (α, β) ∈ R+ × R+, we define the two dimensional graph Σ(α,β) in R4:

Σ(α,β) =




x
y

α ln

(√
x2+y2+

√
x2+y2+β2−α2

2

)
β arctan

(
y
x

)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

The domain Ω depends on the choice of (α, β). We distinguish the three cases.

(a) We consider the case when α > β > 0. So,
√
α2 − β2 > 0. Observ-

ing that

(
α√

α2−β2

)2

−
(

β√
α2−β2

)2

= 1, we can take the constant λ > 0

with (coshλ, sinhλ) =

(
α√

α2−β2
, β√

α2−β2

)
. We introduce the new coor-

dinates ( x̃ , ỹ ) =

(
x√

α2−β2
, y√

α2−β2

)
. Recalling the identity arcosh r =

ln
(
r +
√
r2 − 1

)
, r ≥ 1, we find that, up to translations, the rescaled graph

1√
α2−β2

Σ(α,β) is congruent to the surface




x̃
ỹ

(coshλ) arcosh

(√
x̃ 2 + ỹ 2

)
(sinhλ) arctan

(
ỹ
x̃

)

 ∈ R4

∣∣∣∣∣ x̃ 2 + ỹ 2 ≥ 1, x̃ 6= 0


.

The limit case β = 0 (or λ = 0) recovers a catenoid in R3.
(b) When α = β > 0, we take λ = α = β, the minimal surface Σ(α,β) in R4

can be identified as the complex logarithmic graph in C2:{[
ζ

λ log ζ

]
∈ C2

∣∣∣∣∣ ζ = x+ iy ∈ C− {0}

}
.

The limit case α = β = 0 (or λ = 0) recovers a plane in R3.

(c) We assume that β > α > 0. So,
√
β2 − α2 > 0. Observing that(

β√
α2 − β2

)2

−

(
α√

α2 − β2

)2

= 1,

we can take the constant λ > 0 with (coshλ, sinhλ) =

(
β√

β2−α2
, α√

β2−α2

)
.

We introduce the new coordinates ( x̃ , ỹ ) =

(
x√

β2−α2
, y√

β2−α2

)
. Recalling
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the identity arsinh r = ln
(
r +
√
r2 + 1

)
, r ∈ R, we find that, up to transla-

tions, the rescaled graph 1√
β2−α2

Σ(α,β) is congruent to


x̃
ỹ

(sinhλ) arsinh

(√
x̃ 2 + ỹ 2

)
(coshλ) arctan

(
ỹ
x̃

)

 ∈ R4

∣∣∣∣∣ x̃ ∈ R− {0}, ỹ ∈ R


.

The limit case α = 0 (or λ = 0) recovers a helicoid in R3.

Proposition 2.4 (Cauchy–Riemann equations on the minimal graph). Let

Σ =




x
y

f(x, y)
g(x, y)

 ∈ R4 | (x, y) ∈ Ω


be the two dimensional minimal graph in R4. If the system

(4)

[
Ax
Ay

]
=

[E
ω

F
ω

F
ω

G
ω

] [
By
−Bx

]
, or equivalently,

[
Bx
By

]
= −

[E
ω

F
ω

F
ω

G
ω

] [
Ay
−Ax

]
holds on Ω, then the function A(x, y) + iB(x, y) is holomorphic on Σ.

Proof. We observe the two identities (3) in Remark 2.2:

∂

∂y

(
F

ω

)
=

∂

∂x

(
G

ω

)
and

∂

∂y

(
E

ω

)
=

∂

∂x

(
F

ω

)
.

Hence, we can find the potential functions M(x, y) and N(x, y) so that

(Mx,My) =

(
E

ω
,
F

ω

)
and (Nx, Ny) =

(
F

ω
,
G

ω

)
,

in a simply connected neighborhood of any point in the domain Ω. Then,

(x, y)→ (ξ1, ξ2) = (x+M(x, y), y +N(x, y))

is a local diffeomorphism [24, Lemma 4.4]. The the induced conformal metric
on the minimal graph Σ in R4 is given by

g
Σ

=
ω

2 + E
ω + G

ω

(
dξ1

2 + dξ2
2
)
.

The function A(x, y) + iB(x, y) is holomorphic with respect to the conformal
coordinates (ξ1, ξ2) if and only if the Cauchy–Riemann equations holds:[

∂
∂ξ1

(
A ◦ Ξ−1

)
∂
∂ξ2

(
A ◦ Ξ−1

)] =

[
∂
∂ξ2

(
B ◦ Ξ−1

)
− ∂
∂ξ1

(
B ◦ Ξ−1

)] .
It could be transformed to the desired system (4) via the chain rule. �
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Remark 2.5. The Beltrami equations [2] associated to the metric

g
Σ

= Edx2 + 2Fdxdy +Gdy2

is the system[
Bx
By

]
= −

[E
ω

F
ω

F
ω

G
ω

] [
Ay
−Ax

]
, where ω =

√
EG− F 2.

3. Generalized Gauss map and Osserman system of the first order

To define the generalized Gauss map [6,10,22,24] of minimal surfaces in R4,
we prepare the complex hyperquadric Q2 in the complex projective space CP3:

Q2 = {[z1 : z2 : z3 : z4] ∈ CP3 | z1
2 + z2

2 + z3
2 + z4

2 = 0}.

Definition (Generalized Gauss map of minimal surfaces in R4, [24, Section
2]). We consider a conformal harmonic immersion X : Σ → R4, ξ 7→ X(ξ).
The generalized Gauss map of Σ is the map G : Σ→ Q2 ⊂ CP3 defined by

G(ξ) =

[
∂X

∂ξ

]
=

[
∂X

∂ξ1
+ i

∂X

∂ξ2

]
∈ Q2.

The conformality of the immersion X guarantees that the generalized Gauss
map is a well-defined Q2-valued function. The harmonicity of the immersion
X guarantees that the generalized Gauss map is anti-holomorphic.

Lemma 3.1 (Generalized Gauss map of two dimensional minimal graphs in
R4). We consider the minimal graph Σ in R4

Σ =




x
y

f(x, y)
g(x, y)

 ∈ R4 | (x, y) ∈ Ω

 .

The induced metric on Σ is Edx2 + 2Fdxdy +Gdy2. Let ω =
√
EG− F 2. Its

generalized Gauss map G : Ω→ Q2 ⊂ CP3 in terms of the coordinates (x, y) is

G(x, y) = [z1 : z2 : z3 : z4]

=

[
G

ω
: i− F

ω
:
G

ω
fx +

(
i− F

ω

)
fy :

G

ω
gx +

(
i− F

ω

)
gy

]
=

[
1− iF

ω
: i
E

ω
:

(
1− iF

ω

)
fx + i

E

ω
fy :

(
1− iF

ω

)
gx + i

E

ω
gy

]
.

Proof. For the details of the deduction of Lemma 3.1, we refer to [18, Propo-
sition 6], which was inspired by the equality in [23, Lemma, p. 290]. �

Definition (Degenerate minimal surfaces in R4, [24, Section 2]). We say that a
minimal surface Σ in R4 is degenerate if the image of its Q2-valued generalized
Gauss map lies in a hyperplane of the complex projective space CP3.
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Remark 3.2 (Degeneracy of entire two dimensional minimal graphs in arbitrary
codimensions). Extending Bernstein’s Theorem that the only entire minimal
graphs in R3 are planes, Osserman [24, Chapter 5] showed that the generalized
Gauss map of entire two dimensional minimal graphs in Rn+2≥4 are degenerate.
For a geometric illustration of generalized Gauss map of degenerate minimal
surfaces, see [5, Figure 1]. As in [10, Theorem 4.7], degenerate minimal surfaces
in R4 can be described by the Enneper-Weierstrass type representation formula.

Definition (Osserman system for minimal graphs in R4). Let Σ be the graph
in R4 of the pair (f(x, y), g(x, y)) of height functions defined on the domain Ω:

Σ =

Φ(x, y) =


x
y

f(x, y)
g(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

The induced metric gΣ and the area element on the surface Σ are given by

gΣ = Edx2 + 2Fdxdy +Gdy2, dAΣ = ω dx dy, ω =
√
EG− F 2,

where the coefficients of the first fundamental form are determined by

E=Φx ·Φx=1+fx
2 +gx

2, F =Φx ·Φy=fxfy+gxgy, G=Φy ·Φy=1+fy
2 +gy

2.

Given a constant µ ∈ R− {0}, we introduce

(5)

[
fx

fy

]
= µ

[E
ω

F
ω

F
ω

G
ω

] [
gy

−gx

]
,

or equivalently,

(6)

[
gx

gy

]
= − 1

µ

[E
ω

F
ω

F
ω

G
ω

] [
fy

−fx

]
,

which will be called the Osserman system with the coefficient µ ∈ R− {0}.

Remark 3.3. To prove the equivalence of two systems (5) and (6), one may use[E
ω

F
ω

F
ω

G
ω

]−1

=

[ G
ω −Fω
−Fω

E
ω

]
.

Theorem 3.4 (Minimality and degeneracy of Osserman minimal graphs in R4).
If the pair (f(x, y), g(x, y)) satisfies the Osserman system (5) with µ ∈ R−{0},
then the graph

Σ =




x
y

f(x, y)
g(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω


is minimal in R4. Moreover, its generalized Gauss map lies on the hyperplane
z3 + iµz4 = 0 of the complex projective space CP3.
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Proof. To show the minimality of the graph Σ, we employ Proposition 2.1.
Indeed, we use the equalities (6) to obtain

4Σf =
1

ω

[
∂

∂x

(
G

ω
fx −

F

ω
fy

)
+

∂

∂y

(
−F
ω
fx +

E

ω
fy

) ]
=

1

ω

[
∂

∂x
(µgy) +

∂

∂y
(−µgx )

]
= 0,

and use the equalities in (5) to obtain

4
Σ
g =

1

ω

[
∂

∂x

(
G

ω
gx −

F

ω
gy

)
+

∂

∂y

(
−F
ω
gx +

E

ω
gy

) ]
=

1

ω

[
∂

∂x

(
− 1

µ
fy

)
+

∂

∂y

(
1

µ
fx

) ]
= 0.

To prove the degeneracy of the minimal graph Σ, we exploit Lemma 3.1. It
follows from the Osserman systems (5) and (6) that

( fy, gy ) =

(
µ

(
F

ω
gy −

G

ω
gx

)
,

1

µ

(
G

ω
fx −

F

ω
fy

))
,

which can be complexified to

G

ω
fx +

(
i− F

ω

)
fy = −iµ

(
G

ω
gx +

(
i− F

ω

)
gy

)
.

We conclude that the generalized Gauss map G : Ω → Q2 ⊂ CP3, which can
be explicitly given in terms of the coordinates (x, y),

G(x, y) = [z1 : z2 : z3 : z4]

=

[
G

ω
: i− F

ω
:
G

ω
fx +

(
i− F

ω

)
fy :

G

ω
gx +

(
i− F

ω

)
gy

]
lies on the hyperplane z3 = −iµ z4. �

4. Applications of Lagrange potentials on minimal graphs in R3

It would be not easy to construct explicit examples of non-holomorphic
minimal graphs in R4 by directly solving the minimal surface system of the
second order. We solve the Osserman system of the first order to construct
explicit examples of two dimensional minimal graphs in R4.

Lemma 4.1 (Existence of Lagrange potentials on minimal graphs in R3). Let
Ω ⊂ R2 be a simply connected domain. We consider the two dimensional graph

Σ =


 x

y
p(x, y)

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω


of the C2 height function p : Ω → R. Then, the following two statements are
equivalent:

(a) The graph Σ is a minimal surface in R3.
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(b) There exists a function q : Ω→ R satisfying the Lagrange system

(7)

 qy

−qx

 =

 px√
1+px2+py2

py√
1+px2+py2


and the gradient estimate

(8) qx
2 + qy

2 < 1.

Proof. The graph Σ is minimal in R3 if and only if the function p(x, y) satisfies

(9) 0 =
∂

∂x

(
px√

1 + px2 + py2

)
+

∂

∂y

(
py√

1 + px2 + py2

)
, (x, y) ∈ Ω,

which indicates that the following one form is closed:

(10) ω = − py√
1 + px2 + py2

dx+
px√

1 + px2 + py2
dy.

Since Ω is simply connected, by Poincaré Lemma, the one form ω is exact. So,
we can find a potential function q : Ω→ R such that

− py√
1 + px2 + py2

dx+
px√

1 + px2 + py2
dy = dq = qxdx+ qydy.

The inequality (8) follows from the equality 1− qx2 − qy2 = 1
1+px2+py2 . �

Remark 4.2 (Lagrange potentials and conjugate surfaces of minimal graphs
in R3). The exactness of the one form ω in (10) on the minimal graph is
discovered by Lagrange [14], who deduced the minimal surface equation (9).
When we have the Cauchy-Riemann equations

(11)

 (x∗k)x

(x∗k)y

 =

 pxpy√
1+px2+py2

− 1+px
2√

1+px2+py2

1+py
2

√
1+px2+py2

− pxpy√
1+px2+py2

(xk)x

(xk)y

 ,
on the minimal graph

Σ =


x1(x, y)
x2(x, y)
x3(x, y)

 =

 x
y

p(x, y)

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω

 ,

the function xk + ix∗k is holomorphic on Σ for each k ∈ {1, 2, 3}. It is straight-
forward to check that this observation is a particular case of Proposition 2.4
with the pair (f(x, y), g(x, y)) = (p(x, y), 0).

(a) The conjugate surface

Σ∗ =


 (x∗1(x, y)
x∗2(x, y)
x∗3(x, y)

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω


is a minimal surface locally isometric to the minimal surface Σ.
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(b) Taking k = 3 in the Cauchy-Riemann equations (11) yields the Lagrange
system (7), which reduces toqx

qy

 =

 pxpy√
1+px2+py2

− 1+px
2√

1+px2+py2

1+py
2

√
1+px2+py2

− pxpy√
1+px2+py2

px
py

 .
The function p+ iq is holomorphic on Σ with respect to the classical conformal
coordinates constructed in Proposition 2.4.

(c) Combining the Lagrange system (7) and the gradient estimation (8)
yields

(12)
∂

∂x

(
qx√

1− qx2 − qy2

)
+

∂

∂y

(
qy√

1− qx2 − qy2

)
= 0,

which reduces to

(13)
(
1− qy2

)
qxx + 2qxqyqxy +

(
1− qx2

)
qyy = 0.

As a historical remark, the dual equation (13) is reported in 1855 by Catalan
[4, Equation (C), p. 1020], where he discovered minimal surfaces generated by
a one parameter family of parabolas. Calabi [3] observed that (8) and the
dual equation (12) indicates that the graph z = q(x, y) is a maximal surface
(spacelike surface with zero mean curvature) in Lorentz-Minkowski space L3 =(
R3, dx2 + dy2 − dz2

)
.

(d) Taking k = 1 and k = 2 in the Cauchy-Riemann equations (11) yields
two identities

∂

∂y

(
pxpy√

1 + px2 + py2

)
=

∂

∂x

(
1 + py

2√
1 + px2 + py2

)
,

and

∂

∂y

(
1 + px

2√
1 + px2 + py2

)
=

∂

∂x

(
pxpy√

1 + px2 + py2

)
.

Following previous notations, these two equalities can be rewritten as

∂

∂y

(
F

ω

)
=

∂

∂x

(
G

ω

)
and

∂

∂y

(
E

ω

)
=

∂

∂x

(
F

ω

)
.

Theorem 4.3 (Degenerate minimal graphs in R4 derived from minimal graphs
in R3). Let Σ0 be the minimal graph

Σ0 =


 x

y
p(x, y)

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω
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of the C2 height function p : Ω→ R defined on a domain Ω ⊂ R2. Let q : Ω→ R
be the Lagrange potential of the function p, which solves the Lagrange system

(14)

 qy

−qx

 =

 px√
1+px2+py2

py√
1+px2+py2

 .
For a constant λ ∈ R− {0}, we associate the two dimensional graph in R4:

Σλ =




x

y

f(x, y)

g(x, y)

 =


x

y

(coshλ) p(x, y)

(sinhλ) q(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

Then, the graph Σλ is minimal in R4. Also, we obtain the conformal invariance
of the conformally changed induced metric

(15)
1√

det
(
gΣλ

) g
Σλ

=
1√

det
(
gΣ0

) g
Σ0
.

Proof. We want to show that the pair (f, g) = ( (coshλ) p, (sinhλ) q ) satisfies
the Osserman system (5) in Theorem 3.4 with the coefficient µ = cothλ:

(16)

[
fx

fy

]
= cothλ

[E
ω

F
ω

F
ω

G
ω

] [
gy

−gx

]
, where ω =

√
EG− F 2 .

Taking W =
√

1 + px2 + py2 ≥ 1 and using the system (14), we deduce

(17) (qx, qy) =
(
− py
W
,
px
W

)
and qx

2 + qy
2 =

W 2 − 1

W 2
.

We recall the definition (f, g) = ( (coshλ) p, (sinhλ) q ) and deduce

fxgy − fygx = coshλ sinhλ
W 2 − 1

W
.

We use the definition ω =
√
EG− F 2 to obtain

ω2 =
(
1 + fx

2 + gx
2
) (

1 + fy
2 + gy

2
)
− (fxfy + gxgy)

2

= 1 +
(
fx

2 + fy
2
)

+
(
gx

2 + gy
2
)

+ (fxgy − fygx)
2

= 1 + cosh2 λ
(
W 2 − 1

)
+ sinh2 λ+

(
coshλ sinhλ

W 2 − 1

W

)2

=

[(
cosh2 λ

)
W − sinh2 λ

W

]2

.

However, it follows from W ≥ 1 that(
cosh2 λ

)
W − sinh2 λ

W
− 1 =

(
cosh2 λ

)
(W − 1) +

sinh2 λ

W
(W − 1) ≥ 0,
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which implies that (
cosh2 λ

)
W − sinh2 λ

W
≥ 1 > 0.

We conclude that

(18) ω =
(
cosh2 λ

)
W − sinh2 λ

W
.

We use (18) and (17) to deduce the first row equality in (16):

E

ω
gy −

F

ω
gx =

1

ω

[(
1 + fx

2 + gx
2
)
gy − (fxfy + gxgy)gx

]
=

1

ω

[(
1 + fx

2
)
gy − fxfygx

]
=

1

ω

[(
1 +

(
cosh2 λ

)
px

2
)

(sinhλ) qy −
(
cosh2 λ

)
pxpy (sinhλ) qx

]
=

sinhλ

ω
· px
W
·
[
1 +

(
cosh2 λ

) (
px

2 + py
2
)]

=
sinhλ

ω
· px
W
·
[
− sinh2 λ+

(
cosh2 λ

)
W 2
]

= (sinhλ) px
1

ω

[ (
cosh2 λ

)
W − sinh2 λ

W

]
= (sinhλ) px =

fx
cothλ

.

We omit a similar verification of the second row equality in (16). Finally, one
can use the equalities(

E

ω
,
F

ω
,
G

ω

)
=

(
1 + px

2

W
,
pxpy
W

,
1 + py

2

W

)
to check the conformal invariance (15). �

Remark 4.4 (Holomorphic null curves lifted from degenerate minimal graphs
in R4). In Theorem 4.3, if the initial minimal graph Σ0 in R3 is induced by the
holomorphic null curve

φ = (φ1(ζ), φ3(ζ), φ3(ζ))

in C3 with φ1
2 + φ2

2 + φ3
2 = 0 and a local conformal coordinate ζ on Σ0, the

minimal graph Σλ in R4 is induced by

φλ = (φ1(ζ), φ2(ζ), (coshλ)φ3(ζ), (−i sinhλ)φ3(ζ))

with the conformal coordinate ζ on Σλ. The identity cosh2 λ − sinh2 λ = 1
implies the nullity of the induced holomorphic curve φλ in C4:

φ1
2 + φ2

2 + [(coshλ)φ3]
2

+ [(−i sinhλ)φ3]
2

= φ1
2 + φ2

2 + φ3
2 = 0.

For a survey of various deformations of holomorphic null curves in Cn lifted
from minimal surfaces in Rn, we invite readers to refer to [19, Section 2].
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We apply Theorem 4.3 to classical minimal graphs in R3 to find explicit
examples of old and new minimal graphs in R4.

Example 4.5 (Minimal surfaces in R4 foliated by hyperbolas or lines). We
consider the fundamental piece of the helicoid

Σ0 =


 x

y
p(x, y)

 =

 x
y

x tan y

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω = R×
(
−π

2
,
π

2

) .

Solving the induced Lagrange system (7) in Lemma 4.1 qy

−qx

 =

 px√
1+px2+py2

py√
1+px2+py2

 =

 cos y sin y√
cos2y+x2

x√
cos2y+x2

 ,
we obtain q(x, y) = −

√
cos2y + x2 , up to an additive constant. Let λ ∈ R be

a constant. Theorem 4.3 yields the two dimensional minimal graph Σ−λ in R4:

Σ−λ =



x1

x2

x3

x4

 =


x
y

(coshλ)x tan y

sinhλ
√

cos2y + x2

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

(a) When λ = 0, the graph Σ−λ recovers the helicoid in R3 foliated by lines.

(b) Let λ 6= 0. Fix y0 ∈
(
−π2 ,

π
2

)
. The intersection Cy0 of the surface Σ−λ and

the hyperplane x2 = y = y0 is a hyperbola. Indeed, letting the new orthogonal
coordinates (x̃1, x̃3) in the x1x3-plane defined by

x̃1 + ix̃3 =
coshλ sin y0 + i cos y0√
cosh2λ sin2y0 + cos2y0

(x1 + ix3) ,

we can check that the level curve Cy0
in the x̃1x2x̃3x4-space lies on x2 = y0,

x̃1 = 0, and(
x4

sinhλ cos y0

)2

−

(
x̃3√

cosh2λ sin2y0 + cos2y0

)2

= 1.

Under the coordinate transformation (x, y) = (sinhU cosV,V) → (U ,V), we
obtain the conformal harmonic patch for the minimal surface Σ−λ in R4:

(19) F−θ (U ,V) =


sinhU cosV

V
coshλ sinhU sinV
sinhλ coshU cosV

 .
The graph Σ−λ belongs to the family of minimal surfaces discovered by the
author [19, Example 6.1]. It was originally discovered by an application of the
so called parabolic rotations of holomorphic null curves in C3 ⊂ C4 lifted from
helicoids in R3.
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Example 4.6 (Hoffman-Osserman’s minimal surfaces in R4). Over the domain

Ω =
{

(x, y) ∈ R2 | x2 ≤ cosh2 y
}
,

we consider a half of the catenoid

Σ0 =


 x

y
p(x, y)

 =

 x
y√

−x2 + cosh2 y

 ∈ R3 | (x, y) ∈ Ω

 .

The pair (p(x, y), q(x, y)) =
(√
−x2 + cosh2 y , x tanh y

)
solves the Lagrange

system (7) in Lemma 4.1: qy

−qx

 =

 px√
1+px2+py2

py√
1+px2+py2

 =

[
−x

cosh2 y
sinh y
cosh y

]
.

Let λ be a constant. Theorem 4.3 yields the minimal graph Σ+
λ in R4:

Σ+
λ =




x
y

f(x, y)
g(x, y)

 =


x
y

coshλ
√
−x2 + cosh2 y

(sinhλ)x tanh y

 ∈ R4 | (x, y) ∈ Ω

 .

Under the coordinate transformation (x, y) = (coshU cosV,U) → (U ,V), we
obtain the conformal harmonic patch for the minimal surface Σ+

λ in R4:

(20) F+
λ (U ,V) =


coshU cosV

U
coshλ coshU sinV
sinhλ sinhU cosV

 .
This recovers Osserman-Hoffman’s minimal annuli in R4 ([10, Proposition 6.6
and Remark 1] and [19, Example 6.2 and Theorem 6.3]). The conformal har-
monic patches (19) in Example 4.5 and (20) in Example 4.6 represent conjugate
minimal surfaces in R4. For the notion of associate family of locally isometric
minimal surfaces in Rn+2≥3, we invite interested readers to refer to [16].

Example 4.7 (Doubly periodic minimal graphs in R4 derived from Scherk’s
doubly periodic graph in R3). Over the open square

Ω =
{

(x, y) ∈ R2 | x, y ∈
(
−π

2
,
π

2

)}
,

we define the fundamental piece of the doubly periodic graph in R3:

(21)


 x

y

ln
(

cos x
cos y

)
 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω

 ,
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which was originally discovered by Scherk [27, p. 196]. Let λ ∈ R be a constant.
Theorem 4.3 yields the minimal graph in R4:


x
y

(coshλ) ln
(

cos x
cos y

)
(sinhλ) arcsin (sinx sin y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

Remark 4.8 (Jenkins-Serrin type minimal graphs). Inspired by the existence
of Scherk’s first surfaces, Jenkins and Serrin [11] offers a powerful analytic
method to extend Scherk’s construction. The fundamental piece of Scherk’s
first surface can be obtained as a Jenkins-Serrin graph by solving the Dirichlet
problem for the minimal surface equation over a square and taking boundary
values plus infinity on two opposite sides and minus infinity on the other two
opposite sides.

Example 4.9 (Doubly periodic minimal graphs in R4 derived from sheared
Scherk’s doubly periodic graph in R3). Scherk [27, p. 187] showed that his
surface (21) in Example 4.7 belongs to a one parameter family of minimal
graphs. Following [21, p. 70], for an angle constant 2α ∈ (0, π) and a dilation
constant ρ > 0, we define Scherk’s doubly periodic minimal graph Σ2α

ρ by

(22) z = p(x, y) =
1

ρ
ln

[
cos
(
ρ
2

[
x

cosα −
y

sinα

])
cos
(
ρ
2

[
x

cosα + y
sinα

])] ,
where its domain is an infinite chess board-like net of rhomboids Ω = ∪i,j∈ZRij .
Here, we define the rhomboid domain Rij with the length π

ρ as follows

Rij=

{
(x, y)∈R2

∣∣∣∣∣
∣∣∣∣ x

cosα
− y

sinα
− 4i

ρ
π

∣∣∣∣ < π

ρ
,

∣∣∣∣ x

cosα
+

y

sinα
− 4j

ρ
π

∣∣∣∣ < π

ρ

}
.

Taking α = π
4 and ρ = 2 in (22), the graph Σ

π
2
2 is congruent to the minimal

graph (21) in Example 4.7, after the π
4 -rotation. Let λ ∈ R be a constant.

Theorem 4.3 yields the minimal graph in R4:


x
y

(coshλ) p(x, y)
(sinhλ) q(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 ,

where we take the Lagrange potential

q(x, y) =
1

ρ
arccos

[
cos2 α cos

( ρx

cosα

)
− sin2 α cos

( ρy

sinα

)]
.

Example 4.10 (Minimal graphs in R4 derived from Scherk’s saddle tower in
R3). Over the domain Ω =

{
(x, y) ∈ R2 | − 1 < sinhx sinh y < 1

}
, we consider
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a fundamental piece of the singly periodic multi-valued graph in R3:
 x

y
arcsin (sinhx sinh y)

 ∈ R3

∣∣∣∣∣ (x, y) ∈ Ω

 ,

which was originally discovered by Scherk [27, p. 198]. Let λ ∈ R be a constant.
Theorem 4.3 yields the minimal graph in R4:


x
y

(coshλ) arcsin (sinhx sinh y)

(sinhλ) ln
(

cosh x
cosh y

)
 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 .

Remark 4.11 (Scherk’s saddle tower in R3 and its influences). Geometrically,
Scherk’s saddle tower is a smooth minimal desingularization of two perpen-
dicular vertical planes. Scherk’s saddle tower plays a fundamental role in the
modern theory of desingularizations and gluing construction for surfaces with
constant mean curvature and solitons to various curvature flows. Karcher [13]
discovered embedded minimal surfaces in R3 derived from Scherk’s examples,
and Pacard [25] showed the existence of (N − 2)-periodic embedded minimal
hypersurfaces in RN≥4 with four hyperplanar ends.

Example 4.12 (Minimal graphs in R4 derived from Scherk’s generalized tower
in R3). As in [25, Section 1] and [21, p. 74], we take the fundamental piece of
the singly periodic multi-valued graph in R3:

z = p(x, y) =
1

ρ
arccos

[
cos2 α cosh

( ρx

cosα

)
− sin2 α cosh

( ρy

sinα

)]
.

Let λ ∈ R be a constant. Theorem 4.3 yields the minimal graph in R4:


x
y

(coshλ) p(x, y)
(sinhλ) q(x, y)

 ∈ R4

∣∣∣∣∣ (x, y) ∈ Ω

 ,

where we take the Lagrange potential

q(x, y) =
1

ρ
ln

[
cosh

(
ρ
2

[
x

cosα −
y

sinα

])
cosh

(
ρ
2

[
x

cosα + y
sinα

]) ] .
5. Minimal graphs in R3 and special Lagrangian graphs in C3

Fu [8], Jost-Xin [12], Tsui-Wang [28], Yuan [29] established Bernstein type
results for entire special Lagrangian graphs in even dimensional Euclidean
space. Here, we construct non-entire special Lagrangian graphs in C3.
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Proposition 5.1 (Special Lagrangian equation in C3, [9, Theorem 2. 3 and
(4.8)]). Let S be the gradient graph of the R-valued function F (x, y, z) in R3.
Then, the 3-fold S in R6 admits an orientation making it into a special La-
grangian graph in C3 under the complexification

(x1 + iy1, x2 + iy2, x3 + iy3) = (x1, x2, x3, y1, y2, y3)

when the function F (x, y, z) satisfies the special Lagrangian equation

(23) det

Fxx Fxy Fxz
Fyx Fyy Fyz
Fzx Fzy Fzz

 = tr

Fxx Fxy Fxz
Fyx Fyy Fyz
Fzx Fzy Fzz

 .
Remark 5.2. In [9, III.4.B. Degenerate projections and harmonic gradients],
Harvey and Lawson investigated the interesting special case when the solution
of the equation (23) is affine with respect to the coordinate z. The function
F (x, y, z) = p(x, y) + z q(x, y) satisfies the special Lagrangian equation (23) if
and only if the pair (p(x, y), q(x, y)) solves the system{(

1 + py
2
)
pxx − 2pxpypxy +

(
1 + px

2
)
pyy = 0,(

1 + py
2
)
qxx − 2pxpyqxy +

(
1 + px

2
)
qyy = 0.

The first equation means that the graph of p(x, y) is a minimal surface in R3.
The second equation means that q(x, y) is harmonic on the graph of p(x, y).

Combining the harmonicity of the Lagrange potentials of height functions of
the minimal graph in R3 and the Harvey-Lawson reduction [9, Theorem 4.9],
we immediately deduce the following result.

Corollary 5.3 (Lagrange potential construction of special Lagrangian graphs
in R6 = C3). Let

Σ =


 x

y
p(x, y)

 ∈ R3 | (x, y) ∈ Ω


be the minimal graph of the height function p(x, y) : Ω → R on the domain
Ω ⊂ R2. Let q : Ω→ R be the Lagrange potential of the function p such that qy

−qx

 =

 px√
1+px2+py2

py√
1+px2+py2

 .
For any constant λ ∈ R, we obtain the special Lagrangian graph in C3 :

Σλ =




x
y
z

px + λzqx
py + λzqy

λq

 ∈ R6

∣∣∣∣∣ (x, y) ∈ Ω, z ∈ R


.
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Proof. By the item (b) in Remark 4.2, the function p + iq is holomorphic on
the minimal graph Σ. Since p and q are harmonic on the minimal graph Σ, by
Remark 2.2, we obtain the system of equations

(24)

{(
1 + py

2
)
pxx − 2pxpypxy +

(
1 + px

2
)
pyy = 0,(

1 + py
2
)

(λq)xx − 2pxpy(λq)xy +
(
1 + px

2
)

(λq)yy = 0.

Applying the Harvey-Lawson reduction [9, Theorem 4.9] to the system (24)
yields that the gradient graph of the function F (x, y, z) = p(x, y) + λz q(x, y)
becomes a special Lagrangian 3-fold in C3. �

Example 5.4 (Doubly periodic special Lagrangian graph in C3). Let λ be a
constant. We apply Corollary 5.3 to the fundamental piece of Scherk’s doubly
periodic graph on the domain Ω in Example 4.7 to have the one parameter
family of special Lagrangian graph Σλ in C3:

Σλ =





x
y
z

− sin x
cos x + λz sin x cos y√

1−sin2x sin2y
sin y
cos y + λz cos x sin y√

1−sin2x sin2y

λ arcsin (sinx sin y)


∈ R6

∣∣∣∣∣ (x, y) ∈ Ω, z ∈ R


.
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