MINIMAL SURFACE SYSTEM IN EUCLIDEAN FOUR-SPACE

Hojoo Lee

Abstract

We construct generalized Cauchy-Riemann equations of the first order for a pair of two \mathbb{R}-valued functions to deform a minimal graph in \mathbb{R}^{3} to the one parameter family of the two dimensional minimal graphs in \mathbb{R}^{4}. We construct the two parameter family of minimal graphs in \mathbb{R}^{4}, which include catenoids, helicoids, planes in \mathbb{R}^{3}, and complex logarithmic graphs in \mathbb{C}^{2}. We present higher codimensional generalizations of Scherk's periodic minimal surfaces.

1. Introduction

Extending Bernstein's Theorem that the only entire minimal graphs in \mathbb{R}^{3} are planes, Osserman [24, Theorem 5.1] proved that any entire two dimensional minimal graph in \mathbb{R}^{4} should be degenerate, in the sense that its generalized Gauss map lies on a hyperplane of the complex projective space $\mathbb{C P}^{3}$. Landsberg [15] investigated the systems of the first order whose solutions induce minimal varieties. The classical Cauchy-Riemann equations $\left(f_{x}, f_{y}\right)=\left(g_{y},-g_{x}\right)$ satisfies the minimal surface system of the second order

$$
\left\{\begin{array}{l}
0=\left(1+f_{y}{ }^{2}+g_{y}{ }^{2}\right) f_{x x}-2\left(f_{x} f_{y}+g_{x} g_{y}\right) f_{x y}+\left(1+f_{x}{ }^{2}+g_{x}{ }^{2}\right) f_{y y} \\
0=\left(1+f_{y}{ }^{2}+g_{y}{ }^{2}\right) g_{x x}-2\left(f_{x} f_{y}+g_{x} g_{y}\right) g_{x y}+\left(1+f_{x}^{2}+g_{x}{ }^{2}\right) g_{y y}
\end{array}\right.
$$

We construct the Osserman system of the first order, whose solution graphs become degenerate minimal surfaces in \mathbb{R}^{4}.

Theorem 1.1 (Osserman system as a generalization of Cauchy-Riemann equations). Let

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

be the graph in \mathbb{R}^{4} of the pair $(f(x, y), g(x, y))$ of height functions defined on the domain Ω. Let $g_{\Sigma}=E d x^{2}+2 F d x d y+G d y^{2}$ denote the induced metric on
Σ. If the pair $(f(x, y), g(x, y))$ obeys the Osserman system with $\mu \in \mathbb{R}-\{0\}$:
(1) $\left[\begin{array}{l}f_{x} \\ f_{y}\end{array}\right]=\mu\left[\begin{array}{cc}\frac{E}{\omega} & \frac{F}{\omega} \\ \frac{F}{\omega} & \frac{G}{\omega}\end{array}\right]\left[\begin{array}{c}g_{y} \\ -g_{x}\end{array}\right]$, or equivalently, $\left[\begin{array}{l}g_{x} \\ g_{y}\end{array}\right]=-\frac{1}{\mu}\left[\begin{array}{cc}\frac{E}{\omega} & \frac{F}{\omega} \\ \frac{F}{\omega} & \frac{G}{\omega}\end{array}\right]\left[\begin{array}{c}f_{y} \\ -f_{x}\end{array}\right]$, where $\omega=\sqrt{E G-F^{2}}$, then the two dimensional graph Σ is minimal in \mathbb{R}^{4}.

The Lagrange potentials (Lemma 4.1 and Remark 4.2) on minimal graphs in \mathbb{R}^{3} play a critical role in the Jenkins-Serrin construction [11, Section 3] of minimal graphs with infinite boundary values. We use the Lagrange potentials to construct explicit examples of two dimensional minimal graphs in \mathbb{R}^{4} and three dimensional minimal graphs in \mathbb{R}^{6}.

Theorem 1.2 (Two applications of Lagrange potentials of the height functions on minimal surfaces in $\left.\mathbb{R}^{3}\right)$. Let

$$
\Sigma_{0}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

be the minimal graph of the function $p: \Omega \rightarrow \mathbb{R}$ defined on a domain $\Omega \subset \mathbb{R}^{2}$. Let $q: \Omega \rightarrow \mathbb{R}$ denote the Lagrange potential of $p: \Omega \rightarrow \mathbb{R}$ such that

$$
\left[\begin{array}{c}
q_{y} \\
-q_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}} \\
\frac{p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}}
\end{array}\right] .
$$

(a) For a constant $\lambda \in \mathbb{R}-\{0\}$, we consider the graph of the pair $(f(x, y)$, $g(x, y))$:

$$
\Sigma_{\lambda}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) p(x, y) \\
(\sinh \lambda) q(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

Then, the pair $(f(x, y), g(x, y))$ satisfies the Osserman system (1) in Theorem 1.1 with $\mu=\operatorname{coth} \lambda$. In particular, the graph Σ_{λ} is a minimal surface in \mathbb{R}^{4}. Also, we obtain the invariance of the conformally changed induced metric $\frac{1}{\sqrt{\operatorname{det}\left(g_{\Sigma_{\lambda}}\right)}} g_{\Sigma_{\lambda}}=\frac{1}{\sqrt{\operatorname{det}\left(g_{\Sigma_{0}}\right)}} g_{\Sigma_{0}}$.
(b) For any constant $\lambda \in \mathbb{R}-\{0\}$, the three dimensional graph

$$
\left\{\left.\left[\begin{array}{c}
x \\
y \\
z \\
p_{x}+\lambda z q_{x} \\
p_{y}+\lambda z q_{y} \\
\lambda q
\end{array}\right] \in \mathbb{R}^{6} \right\rvert\,(x, y) \in \Omega, z \in \mathbb{R}\right\}
$$

is minimal in \mathbb{R}^{6}. Moreover, it is a special Lagrangian graph in \mathbb{C}^{3}.

We present examples of minimal graphs of codimension two in \mathbb{R}^{4}. In Example 2.3 , we construct the two parameter family of minimal graphs in \mathbb{R}^{4}, which include catenoids, helicoids, planes in \mathbb{R}^{3}, and complex logarithmic graphs in \mathbb{C}^{2}. In Example 4.7, we give a family of codimension two minimal graphs in \mathbb{R}^{4}, which contains Scherk's doubly periodic minimal graphs in \mathbb{R}^{3}. We present higher codimensional generalizations of Scherk's periodic minimal surfaces.

2. Minimal surface system in \mathbb{R}^{4} and Cauchy-Riemann equations

Our ambient space is the Euclidean space \mathbb{R}^{4} equipped with the flat metric $d x_{1}{ }^{2}+d x_{2}{ }^{2}+d x_{3}{ }^{2}+d x_{4}{ }^{2}$.

Proposition 2.1 (Two dimensional minimal graphs in \mathbb{R}^{4}). Let Σ be the graph

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

The induced metric g_{Σ} on the surface Σ reads

$$
g_{\Sigma}=E d x^{2}+2 F d x d y+G d y^{2},
$$

where the coefficients of the first fundamental form are determined by
$E=\Phi_{x} \cdot \Phi_{x}=1+f_{x}{ }^{2}+g_{x}{ }^{2}, F=\Phi_{x} \cdot \Phi_{y}=f_{x} f_{y}+g_{x} g_{y}, G=\Phi_{y} \cdot \Phi_{y}=1+f_{y}{ }^{2}+g_{y}{ }^{2}$.
Let $\omega=\sqrt{E G-F^{2}}$. We introduce the minimal surface operator \mathcal{L}_{Σ} and Laplace-Beltrami operator \triangle_{Σ} acting on functions on Ω :

$$
\mathcal{L}_{\Sigma}=G \frac{\partial^{2}}{\partial x^{2}}-2 F \frac{\partial^{2}}{\partial x \partial y}+E \frac{\partial^{2}}{\partial y^{2}}
$$

$$
\begin{equation*}
\triangle_{\Sigma}=\triangle_{g_{\Sigma}}=\frac{1}{\omega}\left[\frac{\partial}{\partial x}\left(\frac{G}{\omega} \frac{\partial}{\partial x}-\frac{F}{\omega} \frac{\partial}{\partial y}\right)+\frac{\partial}{\partial y}\left(-\frac{F}{\omega} \frac{\partial}{\partial x}+\frac{E}{\omega} \frac{\partial}{\partial y}\right)\right] . \tag{2}
\end{equation*}
$$

Then, the following three conditions are equivalent.
(a) The height functions $f(x, y)$ and $g(x, y)$ are harmonic on the graph Σ :

$$
\triangle_{\Sigma} f=0 \quad \text { and } \quad \triangle_{\Sigma} g=0
$$

(b) The graph Σ is minimal in \mathbb{R}^{4}.
(c) The height functions $f(x, y)$ and $g(x, y)$ solve the minimal surface system:

$$
\mathcal{L}_{\Sigma} f=0 \quad \text { and } \quad \mathcal{L}_{\Sigma} g=0
$$

Proof. Though the equivalences of (a), (b), (c) are well-known, we sketch the proof for the convenience of the readers. The equivalence of (a) and (b) follows from [24, Equation (3.14) in Section 2], which indicates that the Euler-Lagrange system for the area functional of the graph is

$$
\frac{\partial}{\partial x}\left(\frac{G}{\omega}\left[\begin{array}{l}
f_{x} \\
g_{x}
\end{array}\right]-\frac{F}{\omega}\left[\begin{array}{l}
f_{y} \\
g_{y}
\end{array}\right]\right)+\frac{\partial}{\partial y}\left(-\frac{F}{\omega}\left[\begin{array}{l}
f_{x} \\
g_{x}
\end{array}\right]+\frac{E}{\omega}\left[\begin{array}{l}
f_{y} \\
g_{y}
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

which is equivalent to

$$
\triangle_{\Sigma}\left[\begin{array}{l}
f_{x} \\
g_{x}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

There are several ways to establish the equivalence of (b) and (c): [24, Section 2, p. 16-17], [17, Section 2], [1, Section 1.2] (for arbitrary codimension), [20, Appendix: The minimal surface system], and [7, Example 1] (for more general ambient spaces). Here, we adopt the argument in the proof of [22, Theorem 2.2]. We use the formula (2) and introduce

$$
(\mathcal{P}, \mathcal{Q}):=\left(\frac{\partial}{\partial x}\left(\frac{G}{\omega}\right)-\frac{\partial}{\partial y}\left(\frac{F}{\omega}\right), \frac{\partial}{\partial y}\left(\frac{E}{\omega}\right)-\frac{\partial}{\partial x}\left(\frac{F}{\omega}\right)\right)
$$

to obtain the identity for the mean curvature vector $H(x, y)$:
$H=\triangle_{\Sigma}\left[\begin{array}{c}x \\ y \\ f(x, y) \\ g(x, y)\end{array}\right]=\frac{1}{\omega}\left[\begin{array}{c}\mathcal{P} \\ \mathcal{Q} \\ \mathcal{P} f_{x}+\mathcal{Q} f_{y}+\frac{1}{\omega} \mathcal{L}_{\Sigma} f \\ \mathcal{P} g_{x}+\mathcal{Q} g_{y}+\frac{1}{\omega} \mathcal{L}_{\Sigma} g\end{array}\right]=\frac{\mathcal{P}}{\omega} \Phi_{x}+\frac{\mathcal{Q}}{\omega} \Phi_{y}+\frac{1}{\omega^{2}}\left[\begin{array}{c}0 \\ 0 \\ \mathcal{L}_{\Sigma} f \\ \mathcal{L}_{\Sigma} g\end{array}\right]$.
First, we assume (b). Since the mean curvature vector $H(x, y)$ vanishes on the minimal surface, the four quantities $\mathcal{P}, \mathcal{Q}, \mathcal{L}_{\Sigma} f, \mathcal{L}_{\Sigma} g$ vanish. So, (c) holds. Second, we assume (c). Since $\mathcal{L}_{\Sigma} f=0$ and $\mathcal{L}_{\Sigma} g=0$, the mean curvature vector $H(x, y)$ is equal to the tangent vector $\frac{\mathcal{P}}{\omega} \Phi_{x}+\frac{\mathcal{Q}}{\omega} \Phi_{y}$. As the mean curvature vector $H(x, y)$ is normal to the graph $\Sigma, H(x, y)$ vanishes. So, (b) holds.

Remark 2.2 (Minimal surface operator \mathcal{L}_{Σ} and Laplace-Beltrami operator \triangle_{Σ}). We assume that the two dimensional minimal graph Σ is minimal in \mathbb{R}^{4}. Then,

$$
\Delta_{\Sigma}=\frac{1}{\omega^{2}} \mathcal{L}_{\Sigma}
$$

Indeed, the minimality of the graph Σ implies the two interesting identities

$$
\begin{equation*}
\frac{\partial}{\partial y}\left(\frac{F}{\omega}\right)=\frac{\partial}{\partial x}\left(\frac{G}{\omega}\right) \quad \text { and } \quad \frac{\partial}{\partial y}\left(\frac{E}{\omega}\right)=\frac{\partial}{\partial x}\left(\frac{F}{\omega}\right) \tag{3}
\end{equation*}
$$

which imply

$$
\begin{aligned}
\triangle_{\Sigma} & =\frac{1}{\omega^{2}} \mathcal{L}_{\Sigma}+\left[\frac{\partial}{\partial x}\left(\frac{G}{\omega}\right)-\frac{\partial}{\partial y}\left(\frac{F}{\omega}\right)\right] \frac{\partial}{\partial x}+\left[\frac{\partial}{\partial y}\left(\frac{E}{\omega}\right)-\frac{\partial}{\partial x}\left(\frac{F}{\omega}\right)\right] \frac{\partial}{\partial y} \\
& =\frac{1}{\omega^{2}} \mathcal{L}_{\Sigma}
\end{aligned}
$$

A geometric meaning of (3) is given in Rado's book [26, p. 108]. A variational proof of (3) can be found in Osserman's book [24, Chapter 3]. An interpretation of (3) (via the conjugate minimal surface) is illustrated in Remark 4.2.

Example 2.3 (Two parameter family of minimal graphs in \mathbb{R}^{4} connecting complex logarithmic graphs in \mathbb{C}^{2}, catenoids, and helicoids in \mathbb{R}^{3}). Given a
pair $(\alpha, \beta) \in \mathbb{R}^{+} \times \mathbb{R}^{+}$, we define the two dimensional graph $\Sigma_{(\alpha, \beta)}$ in \mathbb{R}^{4} :

$$
\Sigma_{(\alpha, \beta)}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
\alpha \ln \left(\frac{\sqrt{x^{2}+y^{2}}+\sqrt{x^{2}+y^{2}+\beta^{2}-\alpha^{2}}}{2}\right) \\
\beta \arctan \left(\frac{y}{x}\right)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

The domain Ω depends on the choice of (α, β). We distinguish the three cases.
(a) We consider the case when $\alpha>\beta>0$. So, $\sqrt{\alpha^{2}-\beta^{2}}>0$. Observing that $\left(\frac{\alpha}{\sqrt{\alpha^{2}-\beta^{2}}}\right)^{2}-\left(\frac{\beta}{\sqrt{\alpha^{2}-\beta^{2}}}\right)^{2}=1$, we can take the constant $\lambda>0$ with $(\cosh \lambda, \sinh \lambda)=\left(\frac{\alpha}{\sqrt{\alpha^{2}-\beta^{2}}}, \frac{\beta}{\sqrt{\alpha^{2}-\beta^{2}}}\right)$. We introduce the new coordinates $(\widetilde{x}, \widetilde{y})=\left(\frac{x}{\sqrt{\alpha^{2}-\beta^{2}}}, \frac{y}{\sqrt{\alpha^{2}-\beta^{2}}}\right)$. Recalling the identity $\operatorname{arcosh} r=$ $\ln \left(r+\sqrt{r^{2}-1}\right), r \geq 1$, we find that, up to translations, the rescaled graph $\frac{1}{\sqrt{\alpha^{2}-\beta^{2}}} \Sigma_{(\alpha, \beta)}$ is congruent to the surface

$$
\left\{\left.\left[\begin{array}{c}
\widetilde{x} \\
\widetilde{y} \\
(\cosh \lambda) \operatorname{arcosh}\left(\sqrt{\widetilde{x}^{2}+\widetilde{y}^{2}}\right) \\
(\sinh \lambda) \arctan \left(\frac{\widetilde{y}}{\widetilde{x}}\right)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, \widetilde{x}^{2}+\widetilde{y}^{2} \geq 1, \widetilde{x} \neq 0\right\}
$$

The limit case $\beta=0$ (or $\lambda=0$) recovers a catenoid in \mathbb{R}^{3}.
(b) When $\alpha=\beta>0$, we take $\lambda=\alpha=\beta$, the minimal surface $\Sigma_{(\alpha, \beta)}$ in \mathbb{R}^{4} can be identified as the complex logarithmic graph in \mathbb{C}^{2} :

$$
\left\{\left.\left[\begin{array}{c}
\zeta \\
\lambda \log \zeta
\end{array}\right] \in \mathbb{C}^{2} \right\rvert\, \zeta=x+i y \in \mathbb{C}-\{0\}\right\} .
$$

The limit case $\alpha=\beta=0$ (or $\lambda=0$) recovers a plane in \mathbb{R}^{3}.
(c) We assume that $\beta>\alpha>0$. So, $\sqrt{\beta^{2}-\alpha^{2}}>0$. Observing that

$$
\left(\frac{\beta}{\sqrt{\alpha^{2}-\beta^{2}}}\right)^{2}-\left(\frac{\alpha}{\sqrt{\alpha^{2}-\beta^{2}}}\right)^{2}=1
$$

we can take the constant $\lambda>0$ with $(\cosh \lambda, \sinh \lambda)=\left(\frac{\beta}{\sqrt{\beta^{2}-\alpha^{2}}}, \frac{\alpha}{\sqrt{\beta^{2}-\alpha^{2}}}\right)$.
We introduce the new coordinates $(\widetilde{x}, \widetilde{y})=\left(\frac{x}{\sqrt{\beta^{2}-\alpha^{2}}}, \frac{y}{\sqrt{\beta^{2}-\alpha^{2}}}\right)$. Recalling
the identity arsinh $r=\ln \left(r+\sqrt{r^{2}+1}\right), r \in \mathbb{R}$, we find that, up to translations, the rescaled graph $\frac{1}{\sqrt{\beta^{2}-\alpha^{2}}} \Sigma_{(\alpha, \beta)}$ is congruent to

$$
\left\{\left.\left[\begin{array}{c}
\widetilde{x} \\
\widetilde{y} \\
(\sinh \lambda) \operatorname{arsinh}\left(\sqrt{\widetilde{x}^{2}+\widetilde{y}^{2}}\right) \\
(\cosh \lambda) \arctan \left(\frac{\widetilde{y}}{\widetilde{x}}\right)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, \widetilde{x} \in \mathbb{R}-\{0\}, \widetilde{y} \in \mathbb{R}\right\}
$$

The limit case $\alpha=0$ (or $\lambda=0$) recovers a helicoid in \mathbb{R}^{3}.
Proposition 2.4 (Cauchy-Riemann equations on the minimal graph). Let

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

be the two dimensional minimal graph in \mathbb{R}^{4}. If the system

$$
\left[\begin{array}{c}
\mathcal{A}_{x} \tag{4}\\
\mathcal{A}_{y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]\left[\begin{array}{c}
\mathcal{B}_{y} \\
-\mathcal{B}_{x}
\end{array}\right], \text { or equivalently, }\left[\begin{array}{c}
\mathcal{B}_{x} \\
\mathcal{B}_{y}
\end{array}\right]=-\left[\begin{array}{cc}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]\left[\begin{array}{c}
\mathcal{A}_{y} \\
-\mathcal{A}_{x}
\end{array}\right]
$$

holds on Ω, then the function $\mathcal{A}(x, y)+i \mathcal{B}(x, y)$ is holomorphic on Σ.
Proof. We observe the two identities (3) in Remark 2.2:

$$
\frac{\partial}{\partial y}\left(\frac{F}{\omega}\right)=\frac{\partial}{\partial x}\left(\frac{G}{\omega}\right) \quad \text { and } \quad \frac{\partial}{\partial y}\left(\frac{E}{\omega}\right)=\frac{\partial}{\partial x}\left(\frac{F}{\omega}\right)
$$

Hence, we can find the potential functions $M(x, y)$ and $N(x, y)$ so that

$$
\left(M_{x}, M_{y}\right)=\left(\frac{E}{\omega}, \frac{F}{\omega}\right) \quad \text { and } \quad\left(N_{x}, N_{y}\right)=\left(\frac{F}{\omega}, \frac{G}{\omega}\right),
$$

in a simply connected neighborhood of any point in the domain Ω. Then,

$$
(x, y) \rightarrow\left(\xi_{1}, \xi_{2}\right)=(x+M(x, y), y+N(x, y))
$$

is a local diffeomorphism [24, Lemma 4.4]. The the induced conformal metric on the minimal graph Σ in \mathbb{R}^{4} is given by

$$
g_{\Sigma}=\frac{\omega}{2+\frac{E}{\omega}+\frac{G}{\omega}}\left(d \xi_{1}{ }^{2}+d \xi_{2}^{2}\right) .
$$

The function $\mathcal{A}(x, y)+i \mathcal{B}(x, y)$ is holomorphic with respect to the conformal coordinates $\left(\xi_{1}, \xi_{2}\right)$ if and only if the Cauchy-Riemann equations holds:

$$
\left[\begin{array}{l}
\frac{\partial}{\partial \xi_{1}}\left(\mathcal{A} \circ \Xi^{-1}\right) \\
\frac{\partial}{\partial \xi_{2}}\left(\mathcal{A} \circ \Xi^{-1}\right)
\end{array}\right]=\left[\begin{array}{r}
\frac{\partial}{\partial \xi_{2}}\left(\mathcal{B} \circ \Xi^{-1}\right) \\
-\frac{\partial}{\partial \xi_{1}}\left(\mathcal{B} \circ \Xi^{-1}\right)
\end{array}\right] .
$$

It could be transformed to the desired system (4) via the chain rule.

Remark 2.5. The Beltrami equations [2] associated to the metric

$$
g_{\Sigma}=E d x^{2}+2 F d x d y+G d y^{2}
$$

is the system

$$
\left[\begin{array}{l}
\mathcal{B}_{x} \\
\mathcal{B}_{y}
\end{array}\right]=-\left[\begin{array}{cc}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]\left[\begin{array}{c}
\mathcal{A}_{y} \\
-\mathcal{A}_{x}
\end{array}\right], \quad \text { where } \quad \omega=\sqrt{E G-F^{2}} .
$$

3. Generalized Gauss map and Osserman system of the first order

To define the generalized Gauss map $[6,10,22,24]$ of minimal surfaces in \mathbb{R}^{4}, we prepare the complex hyperquadric \mathcal{Q}_{2} in the complex projective space $\mathbb{C P}^{3}$:

$$
\mathcal{Q}_{2}=\left\{\left[z_{1}: z_{2}: z_{3}: z_{4}\right] \in \mathbb{C P}^{3} \mid z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=0\right\} .
$$

Definition (Generalized Gauss map of minimal surfaces in \mathbb{R}^{4}, [24, Section 2]). We consider a conformal harmonic immersion $X: \Sigma \rightarrow \mathbb{R}^{4}, \xi \mapsto X(\xi)$. The generalized Gauss map of Σ is the map $\mathcal{G}: \Sigma \rightarrow \mathcal{Q}_{2} \subset \mathbb{C P}^{3}$ defined by

$$
\mathcal{G}(\xi)=\left[\overline{\frac{\partial X}{\partial \xi}}\right]=\left[\frac{\partial X}{\partial \xi_{1}}+i \frac{\partial X}{\partial \xi_{2}}\right] \in \mathcal{Q}_{2} .
$$

The conformality of the immersion X guarantees that the generalized Gauss map is a well-defined \mathcal{Q}_{2}-valued function. The harmonicity of the immersion X guarantees that the generalized Gauss map is anti-holomorphic.

Lemma 3.1 (Generalized Gauss map of two dimensional minimal graphs in $\left.\mathbb{R}^{4}\right)$. We consider the minimal graph Σ in \mathbb{R}^{4}

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

The induced metric on Σ is $E d x^{2}+2 F d x d y+G d y^{2}$. Let $\omega=\sqrt{E G-F^{2}}$. Its generalized Gauss map $\mathcal{G}: \Omega \rightarrow \mathcal{Q}_{2} \subset \mathbb{C P}^{3}$ in terms of the coordinates (x, y) is

$$
\begin{aligned}
\mathcal{G}(x, y) & =\left[z_{1}: z_{2}: z_{3}: z_{4}\right] \\
& =\left[\frac{G}{\omega}: i-\frac{F}{\omega}: \frac{G}{\omega} f_{x}+\left(i-\frac{F}{\omega}\right) f_{y}: \frac{G}{\omega} g_{x}+\left(i-\frac{F}{\omega}\right) g_{y}\right] \\
& =\left[1-i \frac{F}{\omega}: i \frac{E}{\omega}:\left(1-i \frac{F}{\omega}\right) f_{x}+i \frac{E}{\omega} f_{y}:\left(1-i \frac{F}{\omega}\right) g_{x}+i \frac{E}{\omega} g_{y}\right] .
\end{aligned}
$$

Proof. For the details of the deduction of Lemma 3.1, we refer to [18, Proposition 6], which was inspired by the equality in [23, Lemma, p. 290].

Definition (Degenerate minimal surfaces in $\mathbb{R}^{4},[24$, Section 2$\left.]\right)$. We say that a minimal surface Σ in \mathbb{R}^{4} is degenerate if the image of its \mathcal{Q}_{2}-valued generalized Gauss map lies in a hyperplane of the complex projective space $\mathbb{C P}^{3}$.

Remark 3.2 (Degeneracy of entire two dimensional minimal graphs in arbitrary codimensions). Extending Bernstein's Theorem that the only entire minimal graphs in \mathbb{R}^{3} are planes, Osserman [24, Chapter 5] showed that the generalized Gauss map of entire two dimensional minimal graphs in $\mathbb{R}^{n+2 \geq 4}$ are degenerate. For a geometric illustration of generalized Gauss map of degenerate minimal surfaces, see [5, Figure 1]. As in [10, Theorem 4.7], degenerate minimal surfaces in \mathbb{R}^{4} can be described by the Enneper-Weierstrass type representation formula.

Definition (Osserman system for minimal graphs in \mathbb{R}^{4}). Let Σ be the graph in \mathbb{R}^{4} of the pair $(f(x, y), g(x, y))$ of height functions defined on the domain Ω :

$$
\Sigma=\left\{\left.\Phi(x, y)=\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

The induced metric g_{Σ} and the area element on the surface Σ are given by

$$
g_{\Sigma}=E d x^{2}+2 F d x d y+G d y^{2}, \quad d A_{\Sigma}=\omega d x d y, \quad \omega=\sqrt{E G-F^{2}}
$$

where the coefficients of the first fundamental form are determined by
$E=\Phi_{x} \cdot \Phi_{x}=1+f_{x}{ }^{2}+g_{x}{ }^{2}, F=\Phi_{x} \cdot \Phi_{y}=f_{x} f_{y}+g_{x} g_{y}, G=\Phi_{y} \cdot \Phi_{y}=1+f_{y}{ }^{2}+g_{y}{ }^{2}$.
Given a constant $\mu \in \mathbb{R}-\{0\}$, we introduce

$$
\left[\begin{array}{l}
f_{x} \tag{5}\\
f_{y}
\end{array}\right]=\mu\left[\begin{array}{cc}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]\left[\begin{array}{c}
g_{y} \\
-g_{x}
\end{array}\right]
$$

or equivalently,

$$
\left[\begin{array}{l}
g_{x} \tag{6}\\
g_{y}
\end{array}\right]=-\frac{1}{\mu}\left[\begin{array}{cc}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]\left[\begin{array}{c}
f_{y} \\
-f_{x}
\end{array}\right]
$$

which will be called the Osserman system with the coefficient $\mu \in \mathbb{R}-\{0\}$.
Remark 3.3. To prove the equivalence of two systems (5) and (6), one may use

$$
\left[\begin{array}{cc}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\frac{G}{\omega} & -\frac{F}{\omega} \\
-\frac{F}{\omega} & \frac{E}{\omega}
\end{array}\right] .
$$

Theorem 3.4 (Minimality and degeneracy of Osserman minimal graphs in \mathbb{R}^{4}). If the pair $(f(x, y), g(x, y))$ satisfies the Osserman system (5) with $\mu \in \mathbb{R}-\{0\}$, then the graph

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

is minimal in \mathbb{R}^{4}. Moreover, its generalized Gauss map lies on the hyperplane $z_{3}+i \mu z_{4}=0$ of the complex projective space $\mathbb{C P}^{3}$.

Proof. To show the minimality of the graph Σ, we employ Proposition 2.1. Indeed, we use the equalities (6) to obtain

$$
\begin{aligned}
\triangle_{\Sigma} f & =\frac{1}{\omega}\left[\frac{\partial}{\partial x}\left(\frac{G}{\omega} f_{x}-\frac{F}{\omega} f_{y}\right)+\frac{\partial}{\partial y}\left(-\frac{F}{\omega} f_{x}+\frac{E}{\omega} f_{y}\right)\right] \\
& =\frac{1}{\omega}\left[\frac{\partial}{\partial x}\left(\mu g_{y}\right)+\frac{\partial}{\partial y}\left(-\mu g_{x}\right)\right]=0
\end{aligned}
$$

and use the equalities in (5) to obtain

$$
\begin{aligned}
\triangle_{\Sigma} g & =\frac{1}{\omega}\left[\frac{\partial}{\partial x}\left(\frac{G}{\omega} g_{x}-\frac{F}{\omega} g_{y}\right)+\frac{\partial}{\partial y}\left(-\frac{F}{\omega} g_{x}+\frac{E}{\omega} g_{y}\right)\right] \\
& =\frac{1}{\omega}\left[\frac{\partial}{\partial x}\left(-\frac{1}{\mu} f_{y}\right)+\frac{\partial}{\partial y}\left(\frac{1}{\mu} f_{x}\right)\right]=0
\end{aligned}
$$

To prove the degeneracy of the minimal graph Σ, we exploit Lemma 3.1. It follows from the Osserman systems (5) and (6) that

$$
\left(f_{y}, g_{y}\right)=\left(\mu\left(\frac{F}{\omega} g_{y}-\frac{G}{\omega} g_{x}\right), \frac{1}{\mu}\left(\frac{G}{\omega} f_{x}-\frac{F}{\omega} f_{y}\right)\right)
$$

which can be complexified to

$$
\frac{G}{\omega} f_{x}+\left(i-\frac{F}{\omega}\right) f_{y}=-i \mu\left(\frac{G}{\omega} g_{x}+\left(i-\frac{F}{\omega}\right) g_{y}\right)
$$

We conclude that the generalized Gauss map $\mathcal{G}: \Omega \rightarrow \mathcal{Q}_{2} \subset \mathbb{C P}^{3}$, which can be explicitly given in terms of the coordinates (x, y),

$$
\begin{aligned}
\mathcal{G}(x, y) & =\left[z_{1}: z_{2}: z_{3}: z_{4}\right] \\
& =\left[\frac{G}{\omega}: i-\frac{F}{\omega}: \frac{G}{\omega} f_{x}+\left(i-\frac{F}{\omega}\right) f_{y}: \frac{G}{\omega} g_{x}+\left(i-\frac{F}{\omega}\right) g_{y}\right]
\end{aligned}
$$

lies on the hyperplane $z_{3}=-i \mu z_{4}$.

4. Applications of Lagrange potentials on minimal graphs in \mathbb{R}^{3}

It would be not easy to construct explicit examples of non-holomorphic minimal graphs in \mathbb{R}^{4} by directly solving the minimal surface system of the second order. We solve the Osserman system of the first order to construct explicit examples of two dimensional minimal graphs in \mathbb{R}^{4}.
Lemma 4.1 (Existence of Lagrange potentials on minimal graphs in \mathbb{R}^{3}). Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected domain. We consider the two dimensional graph

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

of the \mathcal{C}^{2} height function $p: \Omega \rightarrow \mathbb{R}$. Then, the following two statements are equivalent:
(a) The graph Σ is a minimal surface in \mathbb{R}^{3}.
(b) There exists a function $q: \Omega \rightarrow \mathbb{R}$ satisfying the Lagrange system

$$
\left[\begin{array}{c}
q_{y} \tag{7}\\
-q_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}} \\
\frac{p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}}
\end{array}\right]
$$

and the gradient estimate

$$
\begin{equation*}
q_{x}^{2}+q_{y}^{2}<1 \tag{8}
\end{equation*}
$$

Proof. The graph Σ is minimal in \mathbb{R}^{3} if and only if the function $p(x, y)$ satisfies

$$
\begin{equation*}
0=\frac{\partial}{\partial x}\left(\frac{p_{x}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}}\right),(x, y) \in \Omega \tag{9}
\end{equation*}
$$

which indicates that the following one form is closed:

$$
\begin{equation*}
\omega=-\frac{p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}} d x+\frac{p_{x}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}} d y \tag{10}
\end{equation*}
$$

Since Ω is simply connected, by Poincaré Lemma, the one form ω is exact. So, we can find a potential function $q: \Omega \rightarrow \mathbb{R}$ such that

$$
-\frac{p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}} d x+\frac{p_{x}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}} d y=d q=q_{x} d x+q_{y} d y .
$$

The inequality (8) follows from the equality $1-q_{x}{ }^{2}-q_{y}{ }^{2}=\frac{1}{1+p_{x}{ }^{2}+p_{y}{ }^{2}}$.
Remark 4.2 (Lagrange potentials and conjugate surfaces of minimal graphs in \mathbb{R}^{3}). The exactness of the one form ω in (10) on the minimal graph is discovered by Lagrange [14], who deduced the minimal surface equation (9). When we have the Cauchy-Riemann equations

$$
\left[\begin{array}{c}
\left(x_{k}^{*}\right)_{x} \tag{11}\\
\left(x_{k}^{*}\right)_{y}
\end{array}\right]=\left[\begin{array}{ll}
\frac{p_{x} p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}{ }^{2}}} & -\frac{1+p_{x}^{2}}{\sqrt{1+p_{x}^{2}+p_{y}{ }^{2}}} \\
\frac{1+p_{y}^{2}}{\sqrt{1+p_{x}^{2}+p_{y}}} & -\frac{p_{x} p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}}}
\end{array}\right]\left[\begin{array}{l}
\left(x_{k}\right)_{x} \\
\left(x_{k}\right)_{y}
\end{array}\right],
$$

on the minimal graph

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x_{1}(x, y) \\
x_{2}(x, y) \\
x_{3}(x, y)
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

the function $x_{k}+i x_{k}^{*}$ is holomorphic on Σ for each $k \in\{1,2,3\}$. It is straightforward to check that this observation is a particular case of Proposition 2.4 with the pair $(f(x, y), g(x, y))=(p(x, y), 0)$.
(a) The conjugate surface

$$
\Sigma^{*}=\left\{\left.\left[\begin{array}{c}
\left(x_{1}^{*}(x, y)\right. \\
x_{2}^{*}(x, y) \\
x_{3}^{*}(x, y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

is a minimal surface locally isometric to the minimal surface Σ.
(b) Taking $k=3$ in the Cauchy-Riemann equations (11) yields the Lagrange system (7), which reduces to

$$
\left[\begin{array}{l}
q_{x} \\
q_{y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{p_{x} p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}} & -\frac{1+p_{x}{ }^{2}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}} \\
\frac{1+p_{y}^{2}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}} & -\frac{p_{x} p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}}
\end{array}\right]\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] .
$$

The function $p+i q$ is holomorphic on Σ with respect to the classical conformal coordinates constructed in Proposition 2.4.
(c) Combining the Lagrange system (7) and the gradient estimation (8) yields

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{q_{x}}{\sqrt{1-q_{x}^{2}-q_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{q_{y}}{\sqrt{1-q_{x}^{2}-q_{y}^{2}}}\right)=0 \tag{12}
\end{equation*}
$$

which reduces to

$$
\begin{equation*}
\left(1-q_{y}^{2}\right) q_{x x}+2 q_{x} q_{y} q_{x y}+\left(1-q_{x}^{2}\right) q_{y y}=0 \tag{13}
\end{equation*}
$$

As a historical remark, the dual equation (13) is reported in 1855 by Catalan [4, Equation (C), p. 1020], where he discovered minimal surfaces generated by a one parameter family of parabolas. Calabi [3] observed that (8) and the dual equation (12) indicates that the graph $z=q(x, y)$ is a maximal surface (spacelike surface with zero mean curvature) in Lorentz-Minkowski space $\mathbb{L}^{3}=$ $\left(\mathbb{R}^{3}, d x^{2}+d y^{2}-d z^{2}\right)$.
(d) Taking $k=1$ and $k=2$ in the Cauchy-Riemann equations (11) yields two identities

$$
\frac{\partial}{\partial y}\left(\frac{p_{x} p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}}\right)=\frac{\partial}{\partial x}\left(\frac{1+p_{y}^{2}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}}\right)
$$

and

$$
\frac{\partial}{\partial y}\left(\frac{1+p_{x}^{2}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}}\right)=\frac{\partial}{\partial x}\left(\frac{p_{x} p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}}\right)
$$

Following previous notations, these two equalities can be rewritten as

$$
\frac{\partial}{\partial y}\left(\frac{F}{\omega}\right)=\frac{\partial}{\partial x}\left(\frac{G}{\omega}\right) \quad \text { and } \quad \frac{\partial}{\partial y}\left(\frac{E}{\omega}\right)=\frac{\partial}{\partial x}\left(\frac{F}{\omega}\right)
$$

Theorem 4.3 (Degenerate minimal graphs in \mathbb{R}^{4} derived from minimal graphs in \mathbb{R}^{3}). Let Σ_{0} be the minimal graph

$$
\Sigma_{0}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

of the \mathcal{C}^{2} height function $p: \Omega \rightarrow \mathbb{R}$ defined on a domain $\Omega \subset \mathbb{R}^{2}$. Let $q: \Omega \rightarrow \mathbb{R}$ be the Lagrange potential of the function p, which solves the Lagrange system

$$
\left[\begin{array}{c}
q_{y} \tag{14}\\
-q_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}} \\
\frac{p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}}}
\end{array}\right] .
$$

For a constant $\lambda \in \mathbb{R}-\{0\}$, we associate the two dimensional graph in \mathbb{R}^{4} :

$$
\Sigma_{\lambda}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) p(x, y) \\
(\sinh \lambda) q(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

Then, the graph Σ_{λ} is minimal in \mathbb{R}^{4}. Also, we obtain the conformal invariance of the conformally changed induced metric

$$
\begin{equation*}
\frac{1}{\sqrt{\operatorname{det}\left(g_{\Sigma_{\lambda}}\right)}} g_{\Sigma_{\lambda}}=\frac{1}{\sqrt{\operatorname{det}\left(g_{\Sigma_{0}}\right)}} g_{\Sigma_{0}} . \tag{15}
\end{equation*}
$$

Proof. We want to show that the pair $(f, g)=((\cosh \lambda) p,(\sinh \lambda) q)$ satisfies the Osserman system (5) in Theorem 3.4 with the coefficient $\mu=\operatorname{coth} \lambda$:

$$
\left[\begin{array}{l}
f_{x} \tag{16}\\
f_{y}
\end{array}\right]=\operatorname{coth} \lambda\left[\begin{array}{ll}
\frac{E}{\omega} & \frac{F}{\omega} \\
\frac{F}{\omega} & \frac{G}{\omega}
\end{array}\right]\left[\begin{array}{c}
g_{y} \\
-g_{x}
\end{array}\right], \quad \text { where } \quad \omega=\sqrt{E G-F^{2}}
$$

Taking $W=\sqrt{1+p_{x}^{2}+p_{y}}{ }^{2} \geq 1$ and using the system (14), we deduce

$$
\begin{equation*}
\left(q_{x}, q_{y}\right)=\left(-\frac{p_{y}}{W}, \frac{p_{x}}{W}\right) \quad \text { and } \quad q_{x}^{2}+q_{y}^{2}=\frac{W^{2}-1}{W^{2}} \tag{17}
\end{equation*}
$$

We recall the definition $(f, g)=((\cosh \lambda) p,(\sinh \lambda) q)$ and deduce

$$
f_{x} g_{y}-f_{y} g_{x}=\cosh \lambda \sinh \lambda \frac{W^{2}-1}{W}
$$

We use the definition $\omega=\sqrt{E G-F^{2}}$ to obtain

$$
\begin{aligned}
& \omega^{2}=\left(1+{f_{x}}^{2}+g_{x}{ }^{2}\right)\left(1+{f_{y}}^{2}+g_{y}{ }^{2}\right)-\left(f_{x} f_{y}+g_{x} g_{y}\right)^{2} \\
&=1+\left({\left.f_{x}{ }^{2}+f_{y}{ }^{2}\right)+\left(g_{x}{ }^{2}+g_{y}{ }^{2}\right)+\left(f_{x} g_{y}-f_{y} g_{x}\right)^{2}}\right. \\
&=1+\cosh ^{2} \lambda\left(W^{2}-1\right)+\sinh ^{2} \lambda+\left(\cosh \lambda \sinh \lambda \frac{W^{2}-1}{W}\right)^{2} \\
&=\left[\left(\cosh ^{2} \lambda\right) W-\frac{\sinh ^{2} \lambda}{W}\right]^{2}
\end{aligned}
$$

However, it follows from $W \geq 1$ that

$$
\left(\cosh ^{2} \lambda\right) W-\frac{\sinh ^{2} \lambda}{W}-1=\left(\cosh ^{2} \lambda\right)(W-1)+\frac{\sinh ^{2} \lambda}{W}(W-1) \geq 0
$$

which implies that

$$
\left(\cosh ^{2} \lambda\right) W-\frac{\sinh ^{2} \lambda}{W} \geq 1>0
$$

We conclude that

$$
\begin{equation*}
\omega=\left(\cosh ^{2} \lambda\right) W-\frac{\sinh ^{2} \lambda}{W} \tag{18}
\end{equation*}
$$

We use (18) and (17) to deduce the first row equality in (16):

$$
\begin{aligned}
\frac{E}{\omega} g_{y}-\frac{F}{\omega} g_{x} & =\frac{1}{\omega}\left[\left(1+f_{x}^{2}+g_{x}^{2}\right) g_{y}-\left(f_{x} f_{y}+g_{x} g_{y}\right) g_{x}\right] \\
& =\frac{1}{\omega}\left[\left(1+f_{x}^{2}\right) g_{y}-f_{x} f_{y} g_{x}\right] \\
& =\frac{1}{\omega}\left[\left(1+\left(\cosh ^{2} \lambda\right) p_{x}^{2}\right)(\sinh \lambda) q_{y}-\left(\cosh ^{2} \lambda\right) p_{x} p_{y}(\sinh \lambda) q_{x}\right] \\
& =\frac{\sinh \lambda}{\omega} \cdot \frac{p_{x}}{W} \cdot\left[1+\left(\cosh ^{2} \lambda\right)\left(p_{x}^{2}+p_{y}^{2}\right)\right] \\
& =\frac{\sinh \lambda}{\omega} \cdot \frac{p_{x}}{W} \cdot\left[-\sinh ^{2} \lambda+\left(\cosh ^{2} \lambda\right) W^{2}\right] \\
& =(\sinh \lambda) p_{x} \frac{1}{\omega}\left[\left(\cosh ^{2} \lambda\right) W-\frac{\sinh ^{2} \lambda}{W}\right] \\
& =(\sinh \lambda) p_{x}=\frac{f_{x}}{\operatorname{coth} \lambda} .
\end{aligned}
$$

We omit a similar verification of the second row equality in (16). Finally, one can use the equalities

$$
\left(\frac{E}{\omega}, \frac{F}{\omega}, \frac{G}{\omega}\right)=\left(\frac{1+p_{x}^{2}}{W}, \frac{p_{x} p_{y}}{W}, \frac{1+p_{y}^{2}}{W}\right)
$$

to check the conformal invariance (15).
Remark 4.4 (Holomorphic null curves lifted from degenerate minimal graphs in \mathbb{R}^{4}). In Theorem 4.3, if the initial minimal graph Σ_{0} in \mathbb{R}^{3} is induced by the holomorphic null curve

$$
\phi=\left(\phi_{1}(\zeta), \phi_{3}(\zeta), \phi_{3}(\zeta)\right)
$$

in \mathbb{C}^{3} with $\phi_{1}{ }^{2}+{\phi_{2}}^{2}+\phi_{3}{ }^{2}=0$ and a local conformal coordinate ζ on Σ_{0}, the minimal graph Σ_{λ} in \mathbb{R}^{4} is induced by

$$
\phi_{\lambda}=\left(\phi_{1}(\zeta), \phi_{2}(\zeta),(\cosh \lambda) \phi_{3}(\zeta),(-i \sinh \lambda) \phi_{3}(\zeta)\right)
$$

with the conformal coordinate ζ on Σ_{λ}. The identity $\cosh ^{2} \lambda-\sinh ^{2} \lambda=1$ implies the nullity of the induced holomorphic curve ϕ_{λ} in \mathbb{C}^{4} :

$$
\phi_{1}{ }^{2}+\phi_{2}{ }^{2}+\left[(\cosh \lambda) \phi_{3}\right]^{2}+\left[(-i \sinh \lambda) \phi_{3}\right]^{2}={\phi_{1}}^{2}+{\phi_{2}}^{2}+\phi_{3}{ }^{2}=0 .
$$

For a survey of various deformations of holomorphic null curves in \mathbb{C}^{n} lifted from minimal surfaces in \mathbb{R}^{n}, we invite readers to refer to $[19$, Section 2].

We apply Theorem 4.3 to classical minimal graphs in \mathbb{R}^{3} to find explicit examples of old and new minimal graphs in \mathbb{R}^{4}.

Example 4.5 (Minimal surfaces in \mathbb{R}^{4} foliated by hyperbolas or lines). We consider the fundamental piece of the helicoid

$$
\Sigma_{0}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
x \tan y
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega=\mathbb{R} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right\} .
$$

Solving the induced Lagrange system (7) in Lemma 4.1

$$
\left[\begin{array}{c}
q_{y} \\
-q_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}}{\sqrt{1+p_{x}^{2}+p_{y}^{2}}} \\
\frac{p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}^{2}}}
\end{array}\right]=\left[\begin{array}{c}
\frac{\cos y \sin y}{\sqrt{\cos ^{2} y+x^{2}}} \\
\frac{x}{\sqrt{\cos ^{2} y+x^{2}}}
\end{array}\right],
$$

we obtain $q(x, y)=-\sqrt{\cos ^{2} y+x^{2}}$, up to an additive constant. Let $\lambda \in \mathbb{R}$ be a constant. Theorem 4.3 yields the two dimensional minimal graph Σ_{λ}^{-}in \mathbb{R}^{4} :

$$
\Sigma_{\lambda}^{-}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) x \tan y \\
\sinh \lambda \sqrt{\cos ^{2} y+x^{2}}
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\} .
$$

(a) When $\lambda=0$, the graph Σ_{λ}^{-}recovers the helicoid in \mathbb{R}^{3} foliated by lines.
(b) Let $\lambda \neq 0$. Fix $y_{0} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The intersection $\mathcal{C}_{y_{0}}$ of the surface Σ_{λ}^{-}and the hyperplane $x_{2}=y=y_{0}$ is a hyperbola. Indeed, letting the new orthogonal coordinates $\left(\widetilde{x_{1}}, \widetilde{x_{3}}\right)$ in the $x_{1} x_{3}$-plane defined by

$$
\widetilde{x_{1}}+i \widetilde{x_{3}}=\frac{\cosh \lambda \sin y_{0}+i \cos y_{0}}{\sqrt{\cosh ^{2} \lambda \sin ^{2} y_{0}+\cos ^{2} y_{0}}}\left(x_{1}+i x_{3}\right)
$$

we can check that the level curve $\mathcal{C}_{y_{0}}$ in the $\widetilde{x_{1}} x_{2} \widetilde{x_{3}} x_{4}$-space lies on $x_{2}=y_{0}$, $\widetilde{x_{1}}=0$, and

$$
\left(\frac{x_{4}}{\sinh \lambda \cos y_{0}}\right)^{2}-\left(\frac{\widetilde{x_{3}}}{\sqrt{\cosh ^{2} \lambda \sin ^{2} y_{0}+\cos ^{2} y_{0}}}\right)^{2}=1 .
$$

Under the coordinate transformation $(x, y)=(\sinh \mathcal{U} \cos \mathcal{V}, \mathcal{V}) \rightarrow(\mathcal{U}, \mathcal{V})$, we obtain the conformal harmonic patch for the minimal surface Σ_{λ}^{-}in \mathbb{R}^{4} :

$$
F_{\theta}^{-}(\mathcal{U}, \mathcal{V})=\left[\begin{array}{c}
\sinh \mathcal{U} \cos \mathcal{V} \tag{19}\\
\mathcal{V} \\
\cosh \lambda \sinh \mathcal{U} \sin \mathcal{V} \\
\sinh \lambda \cosh \mathcal{U} \cos \mathcal{V}
\end{array}\right]
$$

The graph Σ_{λ}^{-}belongs to the family of minimal surfaces discovered by the author [19, Example 6.1]. It was originally discovered by an application of the so called parabolic rotations of holomorphic null curves in $\mathbb{C}^{3} \subset \mathbb{C}^{4}$ lifted from helicoids in \mathbb{R}^{3}.

Example 4.6 (Hoffman-Osserman's minimal surfaces in \mathbb{R}^{4}). Over the domain

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} \leq \cosh ^{2} y\right\}
$$

we consider a half of the catenoid

$$
\Sigma_{0}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
\sqrt{-x^{2}+\cosh ^{2} y}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

The pair $(p(x, y), q(x, y))=\left(\sqrt{-x^{2}+\cosh ^{2} y}, x \tanh y\right)$ solves the Lagrange system (7) in Lemma 4.1:

$$
\left[\begin{array}{c}
q_{y} \\
-q_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}} \\
\frac{p_{y}}{\sqrt{1+p_{x}{ }^{2}+p_{y}{ }^{2}}}
\end{array}\right]=\left[\begin{array}{c}
\frac{-x}{\cosh ^{2} y} \\
\frac{\sinh y}{\cosh y}
\end{array}\right] .
$$

Let λ be a constant. Theorem 4.3 yields the minimal graph Σ_{λ}^{+}in \mathbb{R}^{4} :

$$
\Sigma_{\lambda}^{+}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
f(x, y) \\
g(x, y)
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
\cosh \lambda \sqrt{-x^{2}+\cosh ^{2} y} \\
(\sinh \lambda) x \tanh y
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

Under the coordinate transformation $(x, y)=(\cosh \mathcal{U} \cos \mathcal{V}, \mathcal{U}) \rightarrow(\mathcal{U}, \mathcal{V})$, we obtain the conformal harmonic patch for the minimal surface Σ_{λ}^{+}in \mathbb{R}^{4} :

$$
F_{\lambda}^{+}(\mathcal{U}, \mathcal{V})=\left[\begin{array}{c}
\cosh \mathcal{U} \cos \mathcal{V} \tag{20}\\
\mathcal{U} \\
\cosh \lambda \cosh \mathcal{U} \sin \mathcal{V} \\
\sinh \lambda \sinh \mathcal{U} \cos \mathcal{V}
\end{array}\right]
$$

This recovers Osserman-Hoffman's minimal annuli in \mathbb{R}^{4} ([10, Proposition 6.6 and Remark 1] and [19, Example 6.2 and Theorem 6.3]). The conformal harmonic patches (19) in Example 4.5 and (20) in Example 4.6 represent conjugate minimal surfaces in \mathbb{R}^{4}. For the notion of associate family of locally isometric minimal surfaces in $\mathbb{R}^{n+2 \geq 3}$, we invite interested readers to refer to [16].

Example 4.7 (Doubly periodic minimal graphs in \mathbb{R}^{4} derived from Scherk's doubly periodic graph in \mathbb{R}^{3}). Over the open square

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right\}
$$

we define the fundamental piece of the doubly periodic graph in \mathbb{R}^{3} :

$$
\left\{\left.\left[\begin{array}{c}
x \tag{21}\\
y \\
\ln \left(\frac{\cos x}{\cos y}\right)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\},
$$

which was originally discovered by Scherk [27, p. 196]. Let $\lambda \in \mathbb{R}$ be a constant. Theorem 4.3 yields the minimal graph in \mathbb{R}^{4} :

$$
\left\{\left.\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) \ln \left(\frac{\cos x}{\cos y}\right) \\
(\sinh \lambda) \arcsin (\sin x \sin y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

Remark 4.8 (Jenkins-Serrin type minimal graphs). Inspired by the existence of Scherk's first surfaces, Jenkins and Serrin [11] offers a powerful analytic method to extend Scherk's construction. The fundamental piece of Scherk's first surface can be obtained as a Jenkins-Serrin graph by solving the Dirichlet problem for the minimal surface equation over a square and taking boundary values plus infinity on two opposite sides and minus infinity on the other two opposite sides.

Example 4.9 (Doubly periodic minimal graphs in \mathbb{R}^{4} derived from sheared Scherk's doubly periodic graph in \mathbb{R}^{3}). Scherk [27, p. 187] showed that his surface (21) in Example 4.7 belongs to a one parameter family of minimal graphs. Following [21, p. 70], for an angle constant $2 \alpha \in(0, \pi)$ and a dilation constant $\rho>0$, we define Scherk's doubly periodic minimal graph $\Sigma_{\rho}^{2 \alpha}$ by

$$
\begin{equation*}
z=p(x, y)=\frac{1}{\rho} \ln \left[\frac{\cos \left(\frac{\rho}{2}\left[\frac{x}{\cos \alpha}-\frac{y}{\sin \alpha}\right]\right)}{\cos \left(\frac{\rho}{2}\left[\frac{x}{\cos \alpha}+\frac{y}{\sin \alpha}\right]\right)}\right] \tag{22}
\end{equation*}
$$

where its domain is an infinite chess board-like net of rhomboids $\Omega=\cup_{i, j \in \mathbb{Z}} \mathcal{R}_{i j}$. Here, we define the rhomboid domain $\mathcal{R}_{i j}$ with the length $\frac{\pi}{\rho}$ as follows
$\mathcal{R}_{i j}=\left\{(x, y) \in \mathbb{R}^{2}| | \frac{x}{\cos \alpha}-\frac{y}{\sin \alpha}-\frac{4 i}{\rho} \pi\left|<\frac{\pi}{\rho},\left|\frac{x}{\cos \alpha}+\frac{y}{\sin \alpha}-\frac{4 j}{\rho} \pi\right|<\frac{\pi}{\rho}\right\}\right.$.
Taking $\alpha=\frac{\pi}{4}$ and $\rho=2$ in (22), the graph $\Sigma_{2}^{\frac{\pi}{2}}$ is congruent to the minimal graph (21) in Example 4.7, after the $\frac{\pi}{4}$-rotation. Let $\lambda \in \mathbb{R}$ be a constant. Theorem 4.3 yields the minimal graph in \mathbb{R}^{4} :

$$
\left\{\left.\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) p(x, y) \\
(\sinh \lambda) q(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

where we take the Lagrange potential

$$
q(x, y)=\frac{1}{\rho} \arccos \left[\cos ^{2} \alpha \cos \left(\frac{\rho x}{\cos \alpha}\right)-\sin ^{2} \alpha \cos \left(\frac{\rho y}{\sin \alpha}\right)\right] .
$$

Example 4.10 (Minimal graphs in \mathbb{R}^{4} derived from Scherk's saddle tower in $\left.\mathbb{R}^{3}\right)$. Over the domain $\Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid-1<\sinh x \sinh y<1\right\}$, we consider
a fundamental piece of the singly periodic multi-valued graph in \mathbb{R}^{3} :

$$
\left\{\left.\left[\begin{array}{c}
x \\
y \\
\arcsin (\sinh x \sinh y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\},
$$

which was originally discovered by Scherk [27, p. 198]. Let $\lambda \in \mathbb{R}$ be a constant. Theorem 4.3 yields the minimal graph in \mathbb{R}^{4} :

$$
\left\{\left.\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) \arcsin (\sinh x \sinh y) \\
(\sinh \lambda) \ln \left(\frac{\cosh x}{\cosh y}\right)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

Remark 4.11 (Scherk's saddle tower in \mathbb{R}^{3} and its influences). Geometrically, Scherk's saddle tower is a smooth minimal desingularization of two perpendicular vertical planes. Scherk's saddle tower plays a fundamental role in the modern theory of desingularizations and gluing construction for surfaces with constant mean curvature and solitons to various curvature flows. Karcher [13] discovered embedded minimal surfaces in \mathbb{R}^{3} derived from Scherk's examples, and Pacard [25] showed the existence of $(N-2)$-periodic embedded minimal hypersurfaces in $\mathbb{R}^{N \geq 4}$ with four hyperplanar ends.

Example 4.12 (Minimal graphs in \mathbb{R}^{4} derived from Scherk's generalized tower in $\left.\mathbb{R}^{3}\right)$. As in $[25$, Section 1] and [21, p. 74$]$, we take the fundamental piece of the singly periodic multi-valued graph in \mathbb{R}^{3} :

$$
z=p(x, y)=\frac{1}{\rho} \arccos \left[\cos ^{2} \alpha \cosh \left(\frac{\rho x}{\cos \alpha}\right)-\sin ^{2} \alpha \cosh \left(\frac{\rho y}{\sin \alpha}\right)\right] .
$$

Let $\lambda \in \mathbb{R}$ be a constant. Theorem 4.3 yields the minimal graph in \mathbb{R}^{4} :

$$
\left\{\left.\left[\begin{array}{c}
x \\
y \\
(\cosh \lambda) p(x, y) \\
(\sinh \lambda) q(x, y)
\end{array}\right] \in \mathbb{R}^{4} \right\rvert\,(x, y) \in \Omega\right\}
$$

where we take the Lagrange potential

$$
q(x, y)=\frac{1}{\rho} \ln \left[\frac{\cosh \left(\frac{\rho}{2}\left[\frac{x}{\cos \alpha}-\frac{y}{\sin \alpha}\right]\right)}{\cosh \left(\frac{\rho}{2}\left[\frac{x}{\cos \alpha}+\frac{y}{\sin \alpha}\right]\right)}\right] .
$$

5. Minimal graphs in \mathbb{R}^{3} and special Lagrangian graphs in \mathbb{C}^{3}

Fu [8], Jost-Xin [12], Tsui-Wang [28], Yuan [29] established Bernstein type results for entire special Lagrangian graphs in even dimensional Euclidean space. Here, we construct non-entire special Lagrangian graphs in \mathbb{C}^{3}.

Proposition 5.1 (Special Lagrangian equation in \mathbb{C}^{3}, $[9$, Theorem 2. 3 and (4.8)]). Let \mathcal{S} be the gradient graph of the \mathbb{R}-valued function $F(x, y, z)$ in \mathbb{R}^{3}. Then, the 3 -fold \mathcal{S} in \mathbb{R}^{6} admits an orientation making it into a special Lagrangian graph in \mathbb{C}^{3} under the complexification

$$
\left(x_{1}+i y_{1}, x_{2}+i y_{2}, x_{3}+i y_{3}\right)=\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)
$$

when the function $F(x, y, z)$ satisfies the special Lagrangian equation

$$
\operatorname{det}\left[\begin{array}{lll}
F_{x x} & F_{x y} & F_{x z} \tag{23}\\
F_{y x} & F_{y y} & F_{y z} \\
F_{z x} & F_{z y} & F_{z z}
\end{array}\right]=\operatorname{tr}\left[\begin{array}{lll}
F_{x x} & F_{x y} & F_{x z} \\
F_{y x} & F_{y y} & F_{y z} \\
F_{z x} & F_{z y} & F_{z z}
\end{array}\right] .
$$

Remark 5.2. In [9, III.4.B. Degenerate projections and harmonic gradients], Harvey and Lawson investigated the interesting special case when the solution of the equation (23) is affine with respect to the coordinate z. The function $F(x, y, z)=p(x, y)+z q(x, y)$ satisfies the special Lagrangian equation (23) if and only if the pair $(p(x, y), q(x, y))$ solves the system

$$
\left\{\begin{array}{l}
\left(1+p_{y}^{2}\right) p_{x x}-2 p_{x} p_{y} p_{x y}+\left(1+p_{x}^{2}\right) p_{y y}=0 \\
\left(1+p_{y}^{2}\right) q_{x x}-2 p_{x} p_{y} q_{x y}+\left(1+p_{x}^{2}\right) q_{y y}=0
\end{array}\right.
$$

The first equation means that the graph of $p(x, y)$ is a minimal surface in \mathbb{R}^{3}. The second equation means that $q(x, y)$ is harmonic on the graph of $p(x, y)$.

Combining the harmonicity of the Lagrange potentials of height functions of the minimal graph in \mathbb{R}^{3} and the Harvey-Lawson reduction [9, Theorem 4.9], we immediately deduce the following result.

Corollary 5.3 (Lagrange potential construction of special Lagrangian graphs in $\mathbb{R}^{6}=\mathbb{C}^{3}$). Let

$$
\Sigma=\left\{\left.\left[\begin{array}{c}
x \\
y \\
p(x, y)
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x, y) \in \Omega\right\}
$$

be the minimal graph of the height function $p(x, y): \Omega \rightarrow \mathbb{R}$ on the domain $\Omega \subset \mathbb{R}^{2}$. Let $q: \Omega \rightarrow \mathbb{R}$ be the Lagrange potential of the function p such that

$$
\left[\begin{array}{c}
q_{y} \\
-q_{x}
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}}{\sqrt{1+p_{x}{ }^{2}+p_{y}}} \\
\frac{p_{y}}{\sqrt{1+p_{x}^{2}+p_{y}}}
\end{array}\right] .
$$

For any constant $\lambda \in \mathbb{R}$, we obtain the special Lagrangian graph in \mathbb{C}^{3} :

$$
\Sigma_{\lambda}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
z \\
p_{x}+\lambda z q_{x} \\
p_{y}+\lambda z q_{y} \\
\lambda q
\end{array}\right] \in \mathbb{R}^{6} \right\rvert\,(x, y) \in \Omega, z \in \mathbb{R}\right\} .
$$

Proof. By the item (b) in Remark 4.2, the function $p+i q$ is holomorphic on the minimal graph Σ. Since p and q are harmonic on the minimal graph Σ, by Remark 2.2, we obtain the system of equations

$$
\left\{\begin{array}{l}
\left(1+p_{y}^{2}\right) p_{x x}-2 p_{x} p_{y} p_{x y}+\left(1+p_{x}^{2}\right) p_{y y}=0 \tag{24}\\
\left(1+p_{y}^{2}\right)(\lambda q)_{x x}-2 p_{x} p_{y}(\lambda q)_{x y}+\left(1+p_{x}^{2}\right)(\lambda q)_{y y}=0 .
\end{array}\right.
$$

Applying the Harvey-Lawson reduction [9, Theorem 4.9] to the system (24) yields that the gradient graph of the function $F(x, y, z)=p(x, y)+\lambda z q(x, y)$ becomes a special Lagrangian 3 -fold in \mathbb{C}^{3}.

Example 5.4 (Doubly periodic special Lagrangian graph in \mathbb{C}^{3}). Let λ be a constant. We apply Corollary 5.3 to the fundamental piece of Scherk's doubly periodic graph on the domain Ω in Example 4.7 to have the one parameter family of special Lagrangian graph Σ_{λ} in \mathbb{C}^{3} :

$$
\Sigma_{\lambda}=\left\{\left.\left[\begin{array}{c}
x \\
y \\
z \\
-\frac{\sin x}{\cos x}+\lambda z \frac{\sin x \cos y}{\sqrt{1-\sin ^{2} x \sin ^{2} y}} \\
\frac{\sin y}{\cos y}+\lambda z \frac{\cos y}{\sqrt{1-\sin ^{2} x \sin ^{2} y}} \\
\lambda \arcsin (\sin x \sin y)
\end{array}\right] \in \mathbb{R}^{6} \right\rvert\,(x, y) \in \Omega, z \in \mathbb{R}\right\} .
$$

References

[1] S. T. Becker-Kahn, Transverse singularities of minimal two-valued graphs in arbitrary codimension, J. Differential Geom. 107 (2017), no. 2, 241-325. https://doi.org/10. 4310/jdg/1506650421
[2] R. Beyerstedt, Removable singularities of solutions to elliptic Monge-Ampère equations, Math. Z. 208 (1991), no. 3, 363-373. https://doi.org/10.1007/BF02571533
[3] E. Calabi, Examples of Bernstein problems for some nonlinear equations, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), 223-230, Amer. Math. Soc., Providence, RI, 1970.
[4] E. Catalan, Mémoire sur les surfaces dont les rayons de courbure, en chaque point, sont égaux et de signer contraires, C. R. Acad. Sci. Paris 41 (1855), 1019-1023. Available at http://gallica.bnf.fr/ark:/12148/bpt6k2998h?rk=21459;2
[5] C. C. Chen and C. C. Góes, Degenerate minimal surfaces in \mathbb{R}^{4}, Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 1-16. https://doi.org/10.1007/BF02584741
[6] S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. Analyse Math. 19 (1967), 15-34. https://doi.org/10.1007/BF02788707
[7] J. Eells, Minimal graphs, Manuscripta Math. 28 (1979), no. 1-3, 101-108. https://doi. org/10.1007/BF01647968
[8] L. Fu, An analogue of Bernstein's theorem, Houston J. Math. 24 (1998), no. 3, 415-419.
[9] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. https://doi.org/10.1007/BF02392726
[10] D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105 pp. https://doi.org/10.1090/memo/0236
[11] H. Jenkins and J. Serrin, Variational problems of minimal surface type. II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal. 21 (1966), 321-342. https://doi.org/10.1007/BF00282252
[12] J. Jost and Y. L. Xin, A Bernstein theorem for special Lagrangian graphs, Calc. Var. Partial Differential Equations 15 (2002), no. 3, 299-312. https://doi.org/10.1007/ s005260100125
[13] H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), no. 1, 83-114. https://doi.org/10.1007/BF01258269
[14] J. L. Lagrange, Essai d'une nouvelle methode pour determiner les maxima et les minima des formules integrales indefinies, Miscellanea Taurinensia 2325 (1760), no. 1, 173-199.
[15] J. M. Landsberg, Minimal submanifolds defined by first-order systems of PDE, J. Differential Geom. 36 (1992), no. 2, 369-415. http://projecteuclid.org/euclid.jdg/ 1214448747
[16] H. B. Lawson, Jr., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161. https://doi.org/10.1007/BF02790373
[17] H. B. Lawson, Jr., and R. Osserman, Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system, Acta Math. 139 (1977), no. 1-2, 1-17. https://doi.org/10.1007/BF02392232
[18] H. Lee, Minimal surface systems, maximal surface systems and special Lagrangian equations, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3775-3797. https://doi.org/10. 1090/S0002-9947-2012-05786-2
[19] H. Lee, Minimal surfaces in \mathbb{R}^{4} foliated by conic sections and parabolic rotations of holomorphic null curves in \mathbb{C}^{4}, J. Korean Math. Soc. 57 (2020), no. 1, 1-19. https: //doi.org/10.4134/JKMS.j180363
[20] M. J. Micallef and B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. (2) 141 (1995), no. 1, 35-85. https://doi. org/10.2307/2118627
[21] J. C. C. Nitsche, Lectures on minimal surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge University Press, Cambridge, 1989.
[22] R. Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092-1120. https: //doi.org/10.1090/S0002-9904-1969-12357-8
[23] R. Osserman, Some properties of solutions to the minimal surface system for arbitrary codimension, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), 283-291, Amer. Math. Soc., Providence, RI, 1970.
[24] R. Osserman, A Survey of Minimal Surfaces, second edition, Dover Publications, Inc., New York, 1986.
[25] F. Pacard, Higher-dimensional Scherk's hypersurfaces, J. Math. Pures Appl. (9) 81 (2002), no. 3, 241-258. https://doi.org/10.1016/S0021-7824(01)01233-8
[26] T. Radó, On the problem of Plateau, Ergebnisse der Math. Band 2, Springer, Berlin, 1933.
[27] H. F. Scherk, Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen, J. Reine Angew. Math. 13 (1835), 185-208. https://doi.org/10.1515/crll.1835.13.185
[28] M.-P. Tsui and M.-T. Wang, A Bernstein type result for special Lagrangian submanifolds, Math. Res. Lett. 9 (2002), no. 4, 529-535. https://doi.org/10.4310/MRL. 2002. v9.n4.a13
[29] Y. Yuan, A Bernstein problem for special Lagrangian equations, Invent. Math. 150 (2002), no. 1, 117-125. https://doi.org/10.1007/s00222-002-0232-0

Hojoo Lee
Department of Mathematics and Institute of Pure and Applied Mathematics
Jeonbuk National University
Jeonju 54896, Korea
Email address: compactkoala@gmail.com, kiarostami@jbnu.ac.kr

