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WEAK HERZ-TYPE HARDY SPACES WITH VARIABLE

EXPONENTS AND APPLICATIONS

Souad Ben Seghier

Abstract. Let α ∈ (0,∞), p ∈ (0,∞) and q(·) : Rn → [1,∞) satisfy the
globally log-Hölder continuity condition. We introduce the weak Herz-

type Hardy spaces with variable exponents via the radial grand maximal

operator and to give its maximal characterizations, we establish a version
of the boundedness of the Hardy-Littlewood maximal operator M and the

Fefferman-Stein vector-valued inequality on the weak Herz spaces with

variable exponents. We also obtain the atomic and the molecular decom-
positions of the weak Herz-type Hardy spaces with variable exponents.

As an application of the atomic decomposition we provide various equiv-

alent characterizations of our spaces by means of the Lusin area function,
the Littlewood-Paley g-function and the Littlewood-Paley g∗λ-function.

1. Introduction

The theory of function spaces with variable exponents has attracted a great
interest in different fields of analysis and partial differential equations (see
[1, 4, 8, 20, 27, 31, 33]). In 1991’s, Kováčik and Rákosńık [21] studied the vari-
able Lebesgue spaces and later, they have been the subject of more intensive
study, because of their intrinsic interest for applications into harmonic anal-
ysis, partial differential equations and variational integrals with nonstandard
growth conditions (see [5, 7, 8, 18]). Lu, Yang and Hu [23] introduced the Herz
type spaces and gave some applications, then later Izuki [16,17] introduced the
Herz space with variable exponents and established the boundedness of some
sublinear operators on this space.

On the other hand, the theory of Hardy spaces with variable exponents
have attracted a steadily increasing interest in harmonic analysis in recent
years. In particular, Nakai and Sawano [24] introduced the variable Hardy
spaces Hp(·)(Rn) and established their atomic characterizations and their dual
spaces, and also studied the boundedness of singular integral operators on
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Hp(·)(Rn). In [28] Sawano further extended the atomic characterization of
Hp(·)(Rn) and improved the corresponding results in [24], and gave out more
applications, including the boundedness of several operators on Hp(·)(Rn). In
[6] the authors also introduced the variable Hardy spaces Hp(·)(Rn) and estab-
lished their equivalent characterizations by means of radial or non-tangential
maximal functions or atoms, with the variable exponents p(·) satisfying some
conditions slightly weaker than those used in [24]. Moreover, Zhuo et al. [34]
established equivalent characterizations of Hp(·)(Rn) via intrinsic square func-
tions including intrinsic Lusin area function, the intrinsic Littlewood-Paley
g-function or g∗λ-function. Recently, Jiao et al. in [20] were mainly devoted to

the study of the Hardy-Lorentz spaces with variable exponents Hp(·),q(Rn).
The purpose of this article is to introduce and to investigate the weak Herz-

type Hardy spaces with variable exponents on Rn. It is well known that the
classical weak Hardy spaces appear naturally in critical cases of the study on
the boundedness of operators. Indeed the classical weak Hardy space WH1(Rn)
was originally introduced by Fefferman and Soria [10] to find out the biggest
space from which Hilbert transform is bounded to the weak Lebesgue space
WL1(Rn). They also obtained the ∞-atomic characterization of WH1(Rn)
and the boundedness of some Calderón-Zygmund operators from WH1(Rn)
to WL1(Rn). It is also well known that Hp(Rn) is a good substitute of the
Lebesgue space Lp(Rn) with p ∈ (0, 1] in the study of the boundedness of
operators and, moreover, when studying the boundedness of operators in the
critical case, the weak Hardy spaces WHp(Rn) naturally appear and prove to
be a good substitute of Hardy spaces Hp(Rn) with p ∈ (0, 1].

Furthermore, Fefferman et al. [9] proved that the weak Hardy spaces nat-
urally appear as the intermediate spaces in the real interpolation methods
between the Hardy spaces, which is another main motivation to develop a real-
variable theory of WHp(Rn). He [14] and Grafakos and He [13] further investi-
gated vector-valued weak Hardy spacesHp,∞(Rn, l2) with p ∈ (0,∞). Recently,
Liang et al. [22] introduced weak Musielak-Orlicz-Hardy spaces WHϕ(Rn) and
various equivalent characterizations by means of maximal functions, atoms,
molecules and Littlewood-Paley functions, and the boundedness of Calderón-
Zygmund operators in the critical case were obtained. In [32] the authors
introduced the variable weak Hardy spaces and gave some applications.

In this article, motivated by [22,32] we aim to introduce and investigate the
weak Herz-type Hardy spaces with variable exponents and give some applica-
tions. These spaces are first defined via the radial grand maximal operator
and then characterized by means of radial or non-tangential maximal oper-
ators. Via combining some ideas we borrowed from [3, 22, 32], we construct
the atomic and the molecular decompositions of the weak Herz-type Hardy
spaces with variable exponents. As an applications of the atomic decomposi-
tion, various equivalent characterizations by means of the Lusin area function,



WEAK HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENTS 35

the Littlewood-Paley g-function and the Littlewood-Paley g∗λ-function, are ob-
tained. To all the above end, we proved a version of the boundedness of the
Hardy-Littlewood maximal operator M and the Fefferman-Stein vector-valued
inequality on the weak Herz spaces with variable exponents.

We end this introduction by describing the layout of this paper.
Section 2 is devoted to recalling some definitions and useful properties for

our work.
In Section 3, we state some basic properties about the weak Herz-type spaces

with variable exponents. We also define the weak Herz-type Hardy space with

variable exponents WHKα,p
q(·)(R

n) (or WHK̇
α,p

q(·)(Rn)) via the radial grand max-

imal function.
Section 4 is devoted to characterize the weak Herz-type Hardy spaces with

variable exponents by means of several maximal operators, particulary, radial
maximal operator, the non-tangential maximal operator, the non-tangential
maximal operator corresponding to Poisson kernels and the discrete maximal
operator. To this end, we first prove the boundedness of sublinear operators on
the weak Herz spaces with variable exponents (see Theorem 4.1), and then we
can deduce the boundedness of the Hardy-Littlewood maximal operator M on
those spaces (see Corollary 4.2), moreover this result may be of independent
interest. By using (Theorem 4.1 and Corollary 4.2) we establish the Fefferman-
Stein vector-valued inequality of the Hardy-Littlewood maximal operator M on
the weak Herz spaces with variable exponents (see Proposition 4.3), moreover
this result will play a role in Section 7 when establishing the Littlewood-Paley
function characterizations.

In Section 5, by borrowing some ideas from [3,22,32], we establish the atomic
characterization of WHKα,p

q(·)(R
n). Indeed, we first introduce the weak atomic

Herz-type Hardy spaces WHKα,p
q(·),s,at(R

n) and then prove that WHKα,p
q(·)(R

n)

∼ WHKα,p
q(·),s,at(R

n) (see Theorem 5.1). To prove that WHKα,p
q(·),s,at(R

n) ⊂
WHKα,p

q(·)(R
n), we mainly need to prove a key lemma result (see Lemma 5.2).

To prove the converse, we adopt a strategy used in [22,32], originated from [3].
In Section 6, we establish the molecular characterization of WHKα,p

q(·)(R
n).

We first introduce the weak molecular Herz-type Hardy spaces WHKα,p,ε
q(·),s,mol

(Rn) and then prove that WHKα,p
q(·)(R

n) ∼ WHKα,p,ε
q(·),s,mol(R

n) (see Theo-

rem 6.1). Since each (α, p, q(·),∞)-atom is also an (α, p, q(·), s, ε)-molecule,
then to prove Theorem 6.1, it suffices to show that WHKα,p,ε

q(·),s,mol(R
n) ⊂

WHKα,p
q(·)(R

n).

Section 7 is devoted to establishing some square function characterizations
of the weak Herz-type Hardy spaces with variable exponents, including char-
acterizations via Lusin area function, the Littlewood-Paley g-function or the
Littlewood-Paley g∗λ-function, respectively, in Theorems 7.2, 7.3 and 7.4. Our
main tool is the atomic decomposition (Theorem 5.1) and the Fefferman-Stein
vector-valued inequality (Proposition 4.3).



36 S. BEN SEGHIER

As usually, throughout the paper, we denote by N and Z the set of non-
negative integers and the set of integers, respectively. The symbol A . B
means A ≤ CB and the symbol A ∼ B means A . B and B . A.

2. Preliminaries

In this section, we recall some definitions, properties and some lemmas used
in this work.

A measurable function q(·) : Rn → (0,∞) is called a variable exponent. For
any variable exponent q(·), define

q− := ess inf{q(x) : x ∈ Rn} and q+ := ess sup{q(x) : x ∈ Rn}.

Denote by P(Rn) the set of all variable exponents q(·) such that 1 < q− ≤
q+ <∞.

For any measurable function f , define the operator %q(·) by

%q(·)(f) =

ˆ
Rn
|f(x)|q(x)dx.

The variable Lebesgue space Lq(·)(Rn) is defined to be the set of all measurable
functions f on Rn such that %q(·)(f) < ∞. Moreover, for any f ∈ Lq(·)(Rn),
its norm in this space is defined by

‖f‖Lq(·)(Rn) := inf
{
λ ∈ (0,∞) : %q(·)(f/λ) ≤ 1

}
.

Similarly, L
q(·)
loc (Rn) is the set of measurable functions f on Rn such that f ∈

Lq(·)(K) for every compact set K ⊂ Rn where

Lq(·)(K) :=
{
f is measurable : %q(·)(f) =

ˆ
K

|f(x)|q(x)dx <∞
}
.

Recall that the Hardy-Littlewood maximal operator M is defined for any
function f ∈ L1

loc(Rn) by

M(f)(x) := sup
Q3x

1

|Q|

ˆ
Q

|f(y)|dy,

where the supremum is taken over all cubes Q of Rn containing x.
In what follows, we denote the set of all variable exponents q(·) ∈ P(Rn),

such that the Hardy-Littlewood maximal operator M is bounded on Lq(·)(Rn),
by B(Rn).

Remark 2.1. We recall that a variable exponent q(·) is said to satisfy the glob-
ally log-Hölder continuity condition if

|q(x)− q(y)| ≤ C

− log(|x− y|)
, x, y ∈ Rn, |x− y| ≤ 1

2
,

|q(x)− q(y)| ≤ C

log(e+ |x|)
, x, y ∈ Rn, |y| ≥ |x|.
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It is worth noting that the set C log(Rn) of all variable exponents which satisfy
the globally log-Hölder continuity condition is an important subset of B(Rn).
We refer the reader to [5] and Nekvinda [25] for more details.

Next, we recall the definition of Herz spaces with variable exponent on Rn.
For this end, let Bk := {x ∈ Rn : |x| ≤ 2k}, Ak = Bk\Bk−1 for k ∈ Z. Denote
by Z+ the set of positive integers, χk = χAk for k ∈ Z, χ̃k = χk for k ∈ Z+

and χ̃0 = χB0
.

Definition 1. Let α ∈ (0,∞), 0 < p ≤ ∞ and q(·) ∈ P(Rn). The non-
homogeneous Herz space with variable exponent Kα,p

q(·)(R
n) is defined to be the

set of all functions f ∈ Lq(·)loc (Rn) such that ‖f‖Kα,p
q(·)(Rn) <∞, where

‖f‖Kα,p
q(·)(Rn) =

( ∞∑
k=0

2kαp‖fχ̃k‖pLq(·)(Rn)

) 1
p

.

The homogeneous Herz space with variable exponent K̇α,p
q(·)(R

n) is defined to be

the set of all functions f ∈ Lq(·)loc (Rn\{0}) such that ‖f‖K̇α,p
q(·)(Rn) <∞, where

‖f‖K̇α,p
q(·)(Rn) =

( ∞∑
k=−∞

2kαp‖fχk‖pLq(·)(Rn)

) 1
p

.

In what follows, we collect some useful lemmas for proving our results in the
next sections.

Lemma 2.2 ([16]). Let q(·) ∈ B(Rn). Then there exists C > 0 such that for
all balls B in Rn and all measurable subsets S ⊂ B,

(2.1)
‖χS‖Lq(·)(Rn)

‖χB‖Lq(·)(Rn)

≤ C
(
|S|
|B|

)δ1
,

(2.2)
‖χS‖Lq′(.)(Rn)

‖χB‖Lq′(.)(Rn)

≤ C
(
|S|
|B|

)δ2
,

where 0 < δ1, δ2 < 1 and for every x ∈ Rn : 1
q(x) + 1

q′(x) = 1.

The next result can be easily checked by a simple computation using the
p-convexity of the ‖ · ‖Lq(·)(Rn) norm.

Lemma 2.3. For any f ∈ Kα,p
q(·)(R

n) and s ∈ (0,∞),

‖|f |s‖Kα,p
q(·)(Rn) = ‖f‖s

K
α
s
,sp

sq(.)
(Rn)

.

The same equality holds for the norm of the space K̇α,p
q(·)(R

n).

The next lemma gives the boundedness of the Hardy-Littlewood maximal
operator M on Kα,p

q(·)(R
n) and K̇α,p

q(·)(R
n). For the proof, we refer to [16, Theo-

rem 4.1(i)].
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Lemma 2.4. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < ∞ and
−nδ1 < α < nδ2, where 0 < δ1, δ2 < 1 are constants satisfying (2.1) and (2.2).
Then the Hardy-Littlewood maximal operator M is bounded on Kα,p

q(·)(R
n) and

K̇α,p
q(·)(R

n).

The Fefferman-Stein vector-valued inequality of M on Kα,p
q(·)(R

n) and K̇α,p
q(·)(R

n)

is given by the next lemma. It was proved in [17, Remark 4.2].

Lemma 2.5. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < ∞,
1 < r < ∞ and −nδ1 < α < nδ2, where 0 < δ1, δ2 < 1 satisfying (2.1)
and (2.2). Then there exists a positive constant C such that, for all sequences
{fj}∞j=1 ∈ Kα,p

q(·)(R
n),∥∥∥∥( ∞∑

j=1

|M(fj)|r
) 1
r
∥∥∥∥
Kα,p
q(·)(Rn)

≤ C
∥∥∥∥( ∞∑

j=1

|fj |r
) 1
r
∥∥∥∥
Kα,p
q(·)(Rn)

.

The same result holds for the space K̇α,p
q(·)(R

n).

The similar result of Lemma 2.5 was obtained in the variable Lebesgue space
Lq(·)(Rn) (see [4, Corollary 2.1]).

Lemma 2.6. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞ and 1 < r < ∞.
Then there exists a positive constant C such that, for all sequences {fj}∞j=1, of
measurable functions,∥∥∥∥( ∞∑

j=1

|M(fj)|r
) 1
r
∥∥∥∥
Lq(·)(Rn)

≤ C
∥∥∥∥( ∞∑

j=1

|fj |r
) 1
r
∥∥∥∥
Lq(·)(Rn)

.

Remark 2.7. For all q(·) ∈ P(Rn), 0 < p < 1 and α ∈ (0,∞), we have

‖f‖Lq(·)(Rn) =

∥∥∥∥ ∞∑
k=0

χ̃kf

∥∥∥∥
Lq(·)(Rn)

.
∞∑
k=0

‖χ̃kf‖Lq(·)(Rn)

.

( ∞∑
k=0

2kαp‖χ̃kf‖pLq(·)(Rn)

) 1
p

= ‖f‖Kα,p
q(·)(Rn).

The same holds for the space K̇α,p
q(·)(R

n).

Remark 2.8. Let q(·) ∈ Clog(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < ∞ and
α ∈ (0,∞). By Lemma 2.5 and the fact that, for all cubes B ⊂ Rn, β ∈ [1,∞)

and r ∈ (0,min{1, nδ2α }), χβB ≤ β
n
r [M(χB)]

1
r , we conclude that∥∥∥∥∑

j∈N
χβBj

∥∥∥∥
Kα,p
q(.)

(Rn)

. β
n
r

∥∥∥∥∑
j∈N

χBj

∥∥∥∥
Kα,p
q(.)

(Rn)

.
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The dual spaces of the Kα,p
q(·)(R

n) and K̇α,p
q(·)(R

n) are given in the next lemma.

The reader is referred to [16,17] for more details.

Lemma 2.9. Let α ∈ R, q(·) ∈ P(Rn) and 1 < p < ∞. Then Kα,p
q(·)(R

n)

coincides with the dual space of K−α,p
′

q′(.) (Rn), where 1
p + 1

p′ = 1 and for every

x ∈ Rn : 1
q(x) + 1

q′(x) = 1.

Moreover,

‖f‖Kα,p
q(·)(Rn) = sup

{∣∣∣∣ˆ
Rn
f(x)g(x)dx

∣∣∣∣ : ‖g‖
K−α,p

′
q′(.) (Rn)

≤ 1

}
.

The same duality is also true for K̇α,p
q(·)(R

n).

The next lemma introduces the generalised Hölder inequality. It can be
found in [19].

Lemma 2.10. Let X be a Banach function space and X ′ denotes its associate
space that means X ′ is the set of all complex-valued measurable functions f
defined on Rn such that

‖f‖X′ := sup
g

{∣∣∣∣ˆ
Rn
f(x)g(x)dx

∣∣∣∣ : ‖g‖X ≤ 1

}
<∞.

Then if f ∈ X and g ∈ X ′, we haveˆ
Rn
|f(x)g(x)|dx ≤ ‖f‖X‖g‖X′ .

3. Weak Herz-type Hardy spaces with variable exponents

Definition 2. Let q(·) ∈ P(Rn), 0 < p ≤ ∞ and α ∈ (0,∞). The non-
homogeneous weak Herz space with variable exponent WKα,p

q(·)(R
n) is defined

to be the set of all measurable functions f such that

‖f‖WKα,p
q(·)(Rn) := sup

β∈(0,∞)

β‖χ{x∈Rn:|f(x)|>β}‖Kα,p
q(·)(Rn) <∞.

The homogeneous weak Herz space with variable exponent WK̇
α,p

q(·)(Rn) is de-
fined to be the set of all measurable functions f such that

‖f‖WK̇
α,p
q(·)(Rn) := sup

β∈(0,∞)

β‖χ{x∈Rn:|f(x)|>β}‖K̇α,p
q(·)(Rn) <∞.

Next, we give some properties of WKα,p
q(·)(R

n).

Lemma 3.1. Let q(·) ∈ P(Rn), 0 < p ≤ ∞ and α ∈ (0,∞). Then
‖ · ‖WKα,p

q(·)(Rn) defines a quasi-norm on WKα,p
q(·)(R

n), namely,

(i) ‖f‖WKα,p
q(·)(Rn) = 0 if and only if f = 0 almost everywhere;

(ii) for all λ ∈ C and f ∈WKα,p
q(·)(R

n), ‖λf‖WKα,p
q(·)(Rn) = |λ|‖f‖WKα,p

q(·)(Rn);
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(iii) for any f , g ∈WKα,p
q(·)(R

n),

‖f + g‖p
WKα,p

q(·)(Rn)
≤ 2p

[
‖f‖p

WKα,p
q(·)(Rn)

+ ‖g‖p
WKα,p

q(·)(Rn)

]
.

The same properties holds for WK̇
α,p

q(·)(Rn).

Proof. Since (i) is obviously true, we only prove (ii) and (iii).
To prove (ii), without loss of generality, we may assume that λ 6= 0. By the

definition of ‖ · ‖WKα,p
q(·)(Rn), we have

‖λf‖WKβ,p
q(·)(Rn) = sup

β∈(0,∞)

β‖χ{x∈Rn:|λf(x)|>β}‖Kα,p
q(·)(Rn)

= |λ| sup
β∈(0,∞)

β

|λ|
‖χ{x∈Rn:|f(x)|> β

|λ|}
‖Kα,p

q(·)(Rn)

= |λ|‖f‖WKα,p
q(·)(Rn).

Then, (ii) holds true.
To prove (iii), for any f , g ∈WKα,p

q(·)(R
n), we have that

‖f + g‖p
WKα,p

q(·)(Rn)

= sup
β∈(0,∞)

βp‖χ{x∈Rn:|f(x)+g(x)|>β}‖pKα,p
q(·)(Rn)

≤ sup
β∈(0,∞)

βp
[
‖χ{x∈Rn:|f(x)|> β

2 }
‖p
Kα,p
q(·)(Rn)

+ ‖χ{x∈Rn:|g(x)|> β
2 }
‖p
Kα,p
q(·)(Rn)

]
≤ sup

β∈(0,∞)

βp‖χ{x∈Rn:|f(x)|> β
2 }
‖p
Kα,p
q(·)(Rn)

+ sup
β∈(0,∞)

βp‖χ{x∈Rn:|g(x)|> β
2 }
‖p
Kα,p
q(·)(Rn)

≤ 2p
[
‖f‖p

WKα,p
q(·)(Rn)

+ ‖g‖p
WKα,p

q(·)(Rn)

]
.

Then (iii) holds true. This finishes the proof. �

Remark 3.2. Let q(·) ∈ P(Rn), 0 < p ≤ ∞ and α ∈ (0,∞). Then by the
Aoki-Rolewicz theorem (see [2,26] and [12, Exercise 1.4.6]), we find that there
exists a positive constant v ∈ (0, 1) such that, for all R ∈ N and {fj}Rj=1,∥∥∥∥ R∑

j=1

|fj |
∥∥∥∥v
WKα,p

q(·)(Rn)

≤ 4

[ R∑
j=1

‖fj‖vWKα,p
q(·)(Rn)

]
.

The same holds for WK̇
α,p

q(·)(Rn).

Lemma 3.3. Let q(·) ∈ P(Rn), 0 < p ≤ ∞ and α ∈ (0,∞). Then, for all
f ∈WKα,p

q(·)(R
n) and s ∈ (0,∞), we have

‖|f |s‖WKα,p
q(·)(Rn) = ‖f‖s

WK
α
s
,sp

sq(·) (Rn)
.

The same holds for WK̇
α,p

q(·)(Rn).
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Proof. By Lemma 2.3, we find that

‖|f |s‖WKα,p
q(·)(Rn) = sup

β∈(0,∞)

β‖χ{x∈Rn:|f(x)|s>β}‖Kα,p
q(·)(Rn)

= sup
γ∈(0,∞)

γs‖χ{x∈Rn:|f(x)|>γ}‖Kα,p
q(·)(Rn)

= sup
γ∈(0,∞)

γs‖χ{x∈Rn:|f(x)|>γ}‖s
K
α
s
,sp

sq(·) (Rn)

= ‖f‖s
WK

α
s
,sp

sq(·) (Rn)
.

The proof is complete. �

Definition 3. Let q(·) ∈ P(Rn), 0 < p <∞ and α ∈ (0,∞).

(1) For each N ∈ N, let

FN (Rn) :=

{
ϕ ∈ S(Rn) :

∑
β∈Zn+,|β|≤N

sup
x∈Rn

[(1 + |x|)N |Dβϕ(x)|] ≤ 1

}
.

(2) Let f ∈ S ′(Rn). Denote by MN the grand maximal operator given by

MNf(x) = sup
t>0,Ψ∈FN

|t−nΨ(t−1·) ∗ f(x)|.

(3) The non-homogeneous weak Herz-type Hardy space WHKα,p
q(·)(R

n) is

defined by

WHKα,p
q(·)(R

n) := {f ∈ S ′(Rn) : ‖f‖WHKα,p
q(·)(Rn) <∞},

where

‖f‖WHKα,p
q(·)(Rn) := ‖MNf‖WKα,p

q(·)(Rn).

(4) The homogeneous weak Herz-type Hardy space WHK̇
α,p

q(·)(Rn) is de-
fined by

WHK̇
α,p

q(·)(Rn) := {f ∈ S ′(Rn) : ‖f‖WHK̇
α,p
q(·)(Rn) <∞},

where

‖f‖WHK̇
α,p
q(·)(Rn) := ‖MNf‖WK̇

α,p
q(·)(Rn).

4. Maximal function characterizations

In this section, we give equivalent characterizations of the weak Herz-type
Hardy spaces with variable exponents in terms of several maximal operators.
To this end, we first prove the boundedness of the Hardy-Littlewood maximal
operator M on the weak Herz spaces with variable exponents and further prove
the Fefferman-Stein vector-valued inequality.

Theorem 4.1. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1 and
α ∈ (0,∞). If T is a sublinear operator and bounded on WLq(·)(Rn), then T
is bounded on WKα,p

q(·)(R
n).
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Proof. To prove the claim, let p1 ∈ (1,∞). Since T is bounded on WLq(·)(Rn),
we have that

‖Tf‖p
WKα,p

q(·)(Rn)
= sup
λ∈(0,∞)

∞∑
k=0

2kαp‖Tfχ̃k‖pWLq(·)(Rn)

.
∞∑
k=0

2kαp(1−p1)‖Tf‖p
WLq(·)(Rn)

.
∞∑
k=0

2kαp(1−p1)‖f‖p
WLq(·)(Rn)

.
∞∑
j=0

‖fχ̃j‖pWLq(·)(Rn)

.
∞∑
j=0

2jαp‖fχ̃j‖pWLq(·)(Rn)

. ‖f‖p
WKα,p

q(·)(Rn)
.

Thus

‖Tf‖WKα,p
q(·)(Rn) . ‖f‖WKα,p

q(·)(Rn).

The proof is complete. �

By Theorem 4.1 and the boundedness of M on WLq(·)(Rn) with q− > 1 (see
[32, Corollary 3.3]), we deduce the following boundedness of M on WKα,p

q(·)(R
n).

Corollary 4.2. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1 and
α ∈ (0,∞). Then the Hardy-Littlewood maximal operator M is bounded on
WKα,p

q(·)(R
n).

Moreover, using Theorem 4.1, we obtain the following Fefferman-Stein
vector-valued inequality of the Hardy-Littlewood maximal operator M on
WKα,p

q(·)(R
n).

Proposition 4.3. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1,
1 < r <∞ and α ∈ (0,∞). Then there exists a positive constant C such that,
for all sequences {fj}∞j=1 of measurable functions,∥∥∥∥( ∞∑

j=1

|M(fj)|r
) 1
r
∥∥∥∥
WKα,p

q(·)(Rn)

≤ C
∥∥∥∥( ∞∑

j=1

|fj |r
) 1
r
∥∥∥∥
WKα,p

q(·)(Rn)

.

Proof. Fix an arbitrary sequence of measurable functions {fj}∞j=1 and for any
measurable function g, define

A(g)(x) :=

( ∞∑
j=1

[M(gηj)(x)]r
) 1
r

,
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where r ∈ (1,∞), and

ηj :=
fj(∑∞

j=1 |fj |r
) 1
r

if

( ∞∑
j=1

|fj |r
) 1
r

6= 0, and ηj otherwise.

Then, by the Mikowski inequality, we find that, for any measurable functions
g1 and g2,

A(g1 + g2)(x) =

( ∞∑
j=1

[M([g1 + g2]ηj)(x)]r
) 1
r

≤
( ∞∑
j=1

[M(g1ηj)(x) +M(g2ηj)(x)]r
) 1
r

≤
( ∞∑
j=1

[M(g1ηj)(x)]r
) 1
r

+

( ∞∑
j=1

[M(g2ηj)(x)]r
) 1
r

= A(g1)(x) +A(g2)(x).

Thus A is sublinear. Moreover, for a measurable function h and by applying
Lemma 2.6, we have

‖A(h)‖Lq(·)(Rn) . ‖h‖Lq(·)(Rn).

Let g :=

(∑∞
j=1 |fj |r

) 1
r

. Then, by Theorem 4.1, we deduce that

∥∥∥∥( ∞∑
j=1

|M(fj)|r
) 1
r
∥∥∥∥
WKα,p

q(·)(Rn)

= ‖A(g)‖WKα,p
q(·)(Rn)

. ‖g‖WKα,p
q(·)(Rn) ∼

∥∥∥∥( ∞∑
j=1

|fj |r
) 1
r
∥∥∥∥
WKα,p

q(·)(Rn)

,

which completes the proof. �

Definition 4. Let ϕ ∈ S(Rn) such that
´
Rn ϕ(x)dx 6= 0.

(1) We define the discrete maximal operator with respect to ϕ by

Mϕf(x) := sup
j∈Z
|ϕj ∗ f(x)|,

where

ϕj(x) = 2jnϕ(2jx).

(2) Suppose that we are given an integer L� 1. We write

M∗ϕf(x) = M∗ϕ,Lf(x) := sup
j∈Z

sup
y∈Rn

|ϕj ∗ f(y)|
(1 + 4j |x− y|2)L

.
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Theorem 4.4. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < ∞ and
α ∈ (0,∞). For all f ∈ S ′(Rn), ϕ ∈ S(Rn) such that

´
Rn ϕ(x)dx 6= 0, we have

‖f‖WHKα,p
q(·)(Rn) ∼ ‖Mϕf‖WKα,p

q(·)(Rn) ∼ ‖M∗ϕf‖WKα,p
q(·)(Rn).

Proof. We need the following lemma.

Lemma 4.5. For all f ∈ S ′(Rn) and 0 < θ < 1, we have

M∗ϕf(x) .
(
M [sup

k∈Z
|ϕk ∗ f |θ](x)

) 1
θ

=
(
M [(Mϕf)θ](x)

) 1
θ

.

We fix θ ∈ (0,min{1, nδ2α }). Then by Lemmas 3.3 and 4.5 and Corollary 4.2,
we have

‖M∗ϕf‖WKα,p
q(·)(Rn) .

∥∥∥(M [(Mϕf)θ]
) 1
θ
∥∥∥
WKα,p

q(·)(Rn)

.
∥∥∥M [(Mϕf)θ]

∥∥∥ 1
θ

WK
θα,

p
θ

q(·)
θ

(Rn)

. ‖Mϕf‖WKα,p
q(·)(Rn).

Then, from this and the definitions of Mϕ, M∗ϕ and MN , we have

‖M∗ϕf‖WKα,p
q(·)(Rn) ∼ ‖Mϕf‖Kα,p

q(·)(Rn) . ‖f‖WHKα,p
q(·)(Rn).

Moreover, by [24, p. 3678], we know that for every x ∈ Rn,

MNf(x) .M∗ϕf(x),

then
‖f‖WHKα,p

q(·)(Rn) . ‖M∗ϕf‖WKα,p
q(·)(Rn).

The proof is complete. �

Definition 5. Let f ∈ S ′(Rn), ψ ∈ S(Rn) such that
´
Rn ψ(x)dx 6= 0 and for

t > 0, ψt(x) := t−nψ(xt ).

(1) The radial maximal operator of f is defined by

Mψf(x) := sup
t>0
|f(x) ∗ ψt(x)|.

(2) The non-tangential maximal operator of f is defined by

M∗ψ,af(x) := sup
t>0,|y−x|<at

|f(x) ∗ ψt(y)|, a ∈ (0,∞).

(3) The grand maximal operator:
a) the grand radial maximal operator of f is defined by

MNf(x) := sup
ψ∈FN

Mψf(x)

b) the grand non-tangential maximal operator of f is defined by

M∗Nf(x) := sup
ψ∈FN

M∗ψ,1f(x).
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(4) A distribution f ∈ S ′(Rn) is called a bounded distribution if, ∀ψ ∈
S(Rn), f ∗ψ ∈ L∞(Rn). For a bounded distribution f , its non-tangent-
ial maximal operator with respect to Poisson kernels {Pt}t>0 is defined
by setting, ∀x ∈ Rn,

Nf(x) := sup
t>0,|y−x|<t

|f ∗ Pt(y)|,

where

Pt(x) :=
Γ( [n+1]

2 )

π
n+1
2

t

(t2 + |x|2)
(n+1)

2

,

∀x ∈ Rn, and t > 0.

Remark 4.6. Let f ∈ S ′(Rn).

(1) From the definitions ofMNf andM∗Nf , and [34, Proposition 2.1], we
have, ∀x ∈ Rn,

MNf(x) ∼M∗Nf(x).

(2) ∀x ∈ Rn and ψ ∈ S(Rn),

Mψf(x) .MNf(x).

(3) ∀x ∈ Rn, a ∈ (0,∞) and ψ ∈ S(Rn),

M∗ψ,af(x) .M∗Nf(x).

Theorem 4.7. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1,
α ∈ (0,∞) and a ∈ (0,∞). For all f ∈ S ′(Rn) and N ∈ ( n

q−
+ n + 1,∞), the

following items are equivalent:
(1) f ∈WHKα,p

q(·)(R
n);

(2) there exists ψ∈S(Rn),
´
Rnψ(x)dx 6=0 such that Mψf(x)∈WKα,p

q(·)(R
n);

(3) there exists ψ∈S(Rn),
´
Rnψ(x)dx 6=0 such that M∗ψ,af(x)∈WKα,p

q(·)(R
n);

(4) f is a bounded distribution and Nf(x) ∈WKα,p
q(·)(R

n).

Moreover

‖MNf‖WKα,p
q(·)(Rn)∼‖Mψf‖WKα,p

q(·)(Rn)∼‖M∗ψ,af‖WKα,p
q(·)(Rn)∼‖Nf‖WKα,p

q(·)(Rn).

Proof. We prove (3)⇒ (1). Assume that (3) holds true. Since

N ∈ (max{ α
δ2
,
n

q−
}+ n+ 1,∞),

it follows that there exists T > n
q−

such that N > T + n + 1. From this and

[6, (3.1)], we have, for all x ∈ Rn,

(4.1) MNf(x) .Mψ,T f(x),

where

Mψ,T f(x) = sup
t>0,y∈Rn

|f ∗ ψt(x− y)|
(

1 +
|y|
t

)−T
∀x ∈ Rn.
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On the other hand, by the proof of [12, Theorem 2.1.4(c)] and [6, (3.2)], we
find that, for L := n

T and all x ∈ Rn,

[Mψ,T f(x)]L .M([M∗ψ,1f ]L)(x).

Then, by the fact that T > n
q−

, Lemma 3.3 and Corollary 4.2, we deduce that

‖Mψ,T f‖WKα,p
q(·)(Rn) = ‖(Mψ,T f)L‖

1
L

WK
αL,

p
L

q(·)
L

(Rn)

≤ ‖M([M∗ψ,1f ]L)‖
1
L

WK
αL,

p
L

q(·)
L

(Rn)

≤ ‖(M∗ψ,1f)L‖
1
L

WK
αL,

p
L

q(·)
L

(Rn)
∼ ‖M∗ψ,1f‖WKα,p

q(·)(Rn).

From this and (4.1), we have

‖MNf‖WKα,p
q(·)(Rn) . ‖M∗ψ,1f‖WKα,p

q(·)(Rn).

(1)⇒ (3) It is true by Remark 4.6.
(1)⇔ (2) It is included in Theorem 4.4.
(4) ⇒ (1) Suppose that (4) holds true. Then by [29, p. 99] there exists

ψ ∈ S(Rn),
´
Rn ψ(x)dx 6= 0 such that

Mψf(x) . Nf(x) ∈ Kα,p
q(·)(R

n)

and thus
‖Mψf‖WKα,p

q(·)(Rn) . ‖Nf‖WKα,p
q(·)(Rn).

(1)⇒ (4) To show that Nf ∈WKα,p
q(·)(R

n), we use the fact [29, p. 98] that

the Poisson kernel can be written as

P (x) =

∞∑
k=0

2−kψk2k(x),

where {ψk}k∈N ⊂ S(Rn) have uniformly bounded semi-norms in S(Rn). Fix x
and y such that |x− y| < t. Then

|f ∗ Pt(y)| ≤
∞∑
k=0

2−k|f ∗ ψk2kt(y)| ≤
∞∑
k=0

2−kM∗ψk,1f(x).

Taking the supremum over all such y and t we get, for all x ∈ Rn

Nf(x) ≤
∞∑
k=0

2−kM∗ψk,1f(x).

Since ψk are uniformly bounded, we have same Remark 4.6(2) holds for ψk and
by using Remark 3.2, we have

‖Nf‖υWKα,p
q(·)(Rn) ≤

∞∑
k=0

2−kυ‖M∗ψk,1f‖
υ
WKα,p

q(·)(Rn)
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. ‖MNf‖υWKα,p
q(·)(Rn) <∞.

Then Nf ∈WKα,p
q(·)(R

n).

Next, we show that f is a bounded distribution. By Remark 4.6, we have
that, for all ψ ∈ S(Rn), x ∈ Rn and y ∈ B(x, 1),

|f ∗ ψ(x)| .M∗ψ,1(y) .M∗Nf(y) ∼MNf(y).

Thus, for any x ∈ Rn, we have

B(x, 1) ⊂ Ωf,x := {y ∈ Rn : |f ∗ ψ(x)| .MNf(y)}.

By [32, (3.11)] and Remark 2.7, we conclude that

min{|f ∗ ψ(x)|q− , |f ∗ ψ(x)|q+}
. min{|f ∗ ψ(x)|q− , |f ∗ ψ(x)|q+}max{‖Ωf,x‖q−Lq(·)(Rn)

, ‖Ωf,x‖q+Lq(·)(Rn)
}

. min{|f ∗ ψ(x)|q− , |f ∗ ψ(x)|q+}max{‖Ωf,x‖q−Kα,p
q(·)(Rn)

,Ωf,x‖q+Kα,p
q(·)(Rn)

}

. max{‖MNf‖q−WKα,p
q(·)(Rn)

, ‖MNf‖q+WKα,p
q(·)(Rn)

} <∞.

Therefore, f ∗ ψ ∈ L∞(Rn) and f is a bounded distribution. This ends the
proof. �

5. Atomic characterizations

In this section, we establish the atomic characterizations of the weak Herz-
type Hardy spaces with variable exponents. We begin with introducing the
notion of (α, p, q(·), s)-atom.

Definition 6. Let q(·) ∈ P(Rn), 0 < p < ∞, α ∈ (0,∞), s ∈ (1,∞] and
d ∈ (max{ nq− − n− 1, αδ2 − n− 1},∞)∩Z+. A measurable function a on Rn is

called an (α, p, q(·), s)-atom if there exists a ball B such that

(1) supp a ⊂ B;

(2) ‖a‖Ls(Rn) ≤ |B|
1
s ‖χB‖−1

Kα,p
q(·)(Rn)

;

(3)
´
Rn a(x)xβdx = 0, for all β ∈ Zn+ with |β| ≤ d.

Definition 7. Let q(·) ∈ P(Rn), 0 < p < ∞, α ∈ (0,∞), s ∈ (1,∞]. The
atomic weak Herz-type Hardy space with variable exponent WHKα,p

q(·),s,at(R
n)

is defined as

WHKα,p
q(·),s,at(R

n) :=

{
f ∈ S ′(Rn) : f =

∑
i∈Z

∑
j∈N

λi,jai,j ∈ S ′(Rn)

}
,

where {ai,j}i∈Z,j∈N is a sequence of (α, p, q(·), s)-atoms, associated with balls
{Bi,j}i∈Z,j∈N, satisfying that there exists a positive constant c ∈ (0, 1], such
that, for all x ∈ Rn and i ∈ Z,

∑
j∈N χcBi,j(x) ≤ A with A being a posi-

tive constant independent of x and i and, for all i ∈ Z and j ∈ N, λi,j :=

Ã2i‖χBi,j‖Kα,p
q(·)(Rn) with Ã being a positive constant independent of i and j.
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Moreover, define

‖f‖WHKα,p
q(·),s,at(Rn) := inf

[
sup
i∈Z

∥∥∥∥(∑
j∈N

[
λi,jχBi,j

‖χBi,j‖Kα,p
q(·)(Rn)

]b) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

]
,

where b ∈ (0, 1) and the infimum is taken over all decompositions of f as above.

Theorem 5.1. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1,
α ∈ (0,∞), s ∈ (max{q+,

bnδ1
nδ1−αb},∞] and b ∈ (0, p). Then

‖f‖WHKα,p
q(·),s,at(Rn) ∼ ‖f‖WHKα,p

q(·)(Rn).

To prove Theorem 5.1, we have to prove the following useful technical lemma.

Lemma 5.2. Let q(·)∈C log(Rn) with 1 < q− ≤ q+ <∞, s>max{q+,
bnδ1

nδ1−αb},
α ∈ (0,∞), p ∈ (0,∞) and b ∈ (0,min{1, p}). Then there exists a positive
constant C such that, for all sequences {Qj}j∈N of cubes, {λj}j∈N ⊂ C and
functions {aj}j∈N satisfying, for all j ∈ N, supp aj ⊂ Qj and ‖aj‖Ls(Rn) ≤
|Qj |

1
s , then∥∥∥∥( ∞∑

j=1

|λjaj |b
) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

≤ C
∥∥∥∥( ∞∑

j=1

|λjχQj |b
) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

.

Proof. Let {λj}j∈N ⊂ C and {aj}j∈N be a sequence of functions satisfying
for any j ∈ N, supp aj ⊆ Qj where Qj is a cube of Rn. Then, by Lemmas

2.3 and 2.9, we deduce that there exists a function g ∈ K
−bα,( pb )′

(
q(·)
b )′

(Rn) with

‖g‖
K
−bα,( p

b
)′

(
q(·)
b

)′
(Rn)
≤ 1 such that

∥∥∥∥( ∞∑
j=1

|λjaj |b
) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

=

∥∥∥∥ ∞∑
j=1

|λjaj |b
∥∥∥∥ 1
b

K
bα,

p
b

q(·)
b

(Rn)

.

(ˆ
Rn

∞∑
j=1

|λjaj(x)|b|g(x)|dx
) 1
b

.(5.1)

Then, by Lemma 2.10, we get
ˆ
Rn

∞∑
j=1

|λjaj(x)|b|g(x)|dx

=

∞∑
j=1

|λj |b
ˆ
Rn
|aj(x)|b|g(x)|dx

≤
∞∑
j=1

|λj |b‖aj‖bLs‖g‖L( s
b
)′ (Qj)
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≤
∞∑
j=1

|λj |b|Qj |
b
s ‖g‖

L( s
b
)′ (Qj)

≤
∞∑
j=1

ˆ
Rn
|λj |bχQj (x)

[
M(|g|( sb )′)(x)

] 1
( s
b
)′
dx

≤
∥∥∥∥ ∞∑
j=1

|λjχQj |b
∥∥∥∥
K
bα,

p
b

q(·)
b

(Rn)

∥∥∥∥[M(|g|( sb )′)
] 1

( s
b
)′
∥∥∥∥
K
−bα,( p

b
)′

(
q(·)
b

)′
(Rn)

.

Thus, by (5.1), Lemmas 2.3 and 2.4, we obtain∥∥∥∥( ∞∑
j=1

|λjaj |b
) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

.

∥∥∥∥( ∞∑
j=1

|λjχQj |b
) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

.

The proof is complete. �

Now, we turn to the proof of Theorem 5.1.

Proof. Step 1: In this step we show that WHKα,p
q(·),s,at(R

n) ⊂WHKα,p
q(·)(R

n).

To prove that f ∈WHKα,p
q(·)(R

n), it suffices to show that

sup
β∈(0,∞)

β‖χ{x∈Rn:|f∗(x)|>β}‖Kα,p
q(·)(Rn) . ‖f‖WHKα,p

q(·),s,at(Rn).

To simplify the notation, let f∗ =: MN (f) with N as Theorem 4.7. For any
given β ∈ (0,∞), we choose i0 ∈ Z such that 2i0 ≤ β < 2i0+1 and write

f =

i0−1∑
i=−∞

∑
j∈N

λi,jai,j +

∞∑
i=i0

∑
j∈N

λi,jai,j = f1 + f2.

Moreover, it holds true that

‖χ{x∈Rn:f∗(x)>β}‖Kα,p
q(·)(Rn) . ‖χ{x∈Rn:f∗1 (x)> β

2 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Ai0 :f∗2 (x)> β
2 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈(Ai0 )c:f∗2 (x)> β
2 }
‖Kα,p

q(·)(Rn)

= I1 + I2 + I3,

where Ai0 = ∪∞i=i0 ∪j∈N (2Bi,j).
For I1, it is easy to see that

I1 . ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N λi,j(ai,j)

∗(x)χ2Bi,j
(x)> β

4 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N λi,j(ai,j)

∗(x)χ(2Bi,j)
c (x)> β

4 }
‖Kα,p

q(·)(Rn)

= I1,1 + I1,2.
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To estimate I1,1, for any b ∈ (0, p), let q̃ ∈ (1,min{ s

max{q+, bnδ1
nδ1−αb

}
, 1
b}) and

a ∈ (0, 1− 1
q̃ ). Then by the Hölder inequality, we find that for all x ∈ Rn,

i0−1∑
i=−∞

∑
j∈N

λi,j(ai,j)
∗(x)χ2Bi,j (x)

≤
( i0−1∑
i=−∞

2iaq̃
′
) 1
q̃′
{ i0−1∑
i=−∞

2−iaq̃
[∑
j∈N

λi,j(ai,j)
∗(x)χ2Bi,j (x)

]q̃} 1
q̃

=
2i0a

(2aq̃′ − 1)
1
q̃′

{ i0−1∑
i=−∞

2−iaq̃
[∑
j∈N

λi,j(ai,j)
∗(x)χ2Bi,j (x)

]q̃} 1
q̃

,

where q̃′ denotes the conjugate exponent of q̃, namely, 1
q̃ + 1

q̃′ = 1. From this,

the facts that q̃b < 1 and f∗(x) .Mf(x) for all x ∈ Rn, we deduce that

Ip1,1 .
∥∥∥∥χ{x∈Rn: 2i0a

(2aq̃
′−1)

1
q̃′

[
∑i0−1
i=−∞ 2−iaq̃{

∑
j∈N λi,j(ai,j)

∗χ2Bi,j
(x)}q̃ ]

1
q̃ >2i0−2}

∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q̃(1−a)p

∥∥∥∥ i0−1∑
i=−∞

2−iaq̃
[∑
j∈N

λi,j(ai,j)
∗χ2Bi,j

]q̃∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q̃(1−a)p
i0−1∑
i=−∞

2−iaq̃p
∥∥∥∥[∑

j∈N
λi,jM(ai,j)χ2Bi,j

]q̃∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q̃(1−a)p
i0−1∑
i=−∞

2(1−a)iq̃p

∥∥∥∥{∑
j∈N

[
‖χBi,j‖Kα,p

q(·)(Rn)M(ai,j)χ2Bi,j

]q̃b} 1
b
∥∥∥∥p
Kα,p
q(·)(Rn)

.

Moreover, by the boundedness of M on Lr (1 < r <∞), we have∥∥∥∥[‖χBi,j‖Kα,p
q(·)(Rn)M(ai,j)χ2Bi,j

]q̃∥∥∥∥
L
s
q̃ (Rn)

≤ ‖χBi,j‖
q̃
Kα,p
q(·)(Rn)

‖M(ai,j)χ2Bi,j‖
q̃
Ls(Rn)

. |χ2Bi,j |
q̃
s .

Then, by Lemma 5.2 and Remark 2.8

Ip1,1 . 2−i0q̃(1−a)p
i0−1∑
i=−∞

2(1−a)iq̃p

∥∥∥∥(∑
j∈N

χ2Bi,j

) 1
b
∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q̃(1−a)p
i0−1∑
i=−∞

2[(1−a)q̃−1]ip sup
i∈Z

2ip
∥∥∥∥(∑

j∈N
χBi,j

) 1
b
∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p‖f‖p
WHKα,p

q(·),s,at(Rn)
,

which implies that

(5.2) βI1,1 . ‖f‖WHKα,p
q(·),s,at(Rn).
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For I1,2, from [32, (4.9)], by similar argument we find this key estimate

(5.3) (ai,j)
∗(x) . ‖χBi,j‖−1

Kα,p
q(·)(Rn)

[M(χBi,j )(x)]
n+d+1
n , x ∈ (2Bi,j)

c.

From this, the Hölder inequality, Lemma 2.3, Lemma 2.5 and the fact that d as
in Definition 6, we find for any b ∈ (0, 1), q1 ∈ (max{1, n

(n+d+1)b ,
α

δ2(n+d+1)},
1
b )

and a ∈ (0, 1− 1
q1

),

Ip1,2 .
∥∥∥∥χ{x∈Rn: 2i0a

(2
aq′1−1)

1
q′1

[
∑i0−1
i=−∞ 2−iaq1{

∑
j∈N λi,j(ai,j)

∗χ(2Bi,j)
c (x)}q1 ]

1
q1 >2i0−2}

∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q1(1−a)p

∥∥∥∥ i0−1∑
i=−∞

2−iaq1
[∑
j∈N

λi,j(ai,j)
∗χ(2Bi,j)c

]q1∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q1(1−a)p
i0−1∑
i=−∞

2(1−a)iq1p

∥∥∥∥{∑
j∈N

[M(χBi,j )]
(n+d+1)q1b

n

} n
(n+d+1)q1b

∥∥∥∥
q1(n+d+1)p

n

K
αn

q1(n+d+1)
,
pq1(n+d+1)

n

q(·)q1(n+d+1)
n

(Rn)

. 2−i0q1(1−a)p
i0−1∑
i=−∞

2[(1−a)q1−1]ip2ip
∥∥∥∥{∑

j∈N
χBi,j

} 1
b
∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p sup
i∈Z

2ip
∥∥∥∥{∑

j∈N
χBi,j

} 1
b
∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p‖f‖p
WHKα,p

q(·),s,at(Rn)
,

which implies that

(5.4) βI1,2 . ‖f‖WHKα,p
q(·),s,at(Rn).

Then, by (5.4) and (5.2), we have

(5.5) βI1 . ‖f‖WHKα,p
q(·),s,at(Rn).

For I2, by Remark 2.8, we have

Ip2 ≤ ‖χAi0 ‖
p
Kα,p
q(·)(Rn)

≤
∥∥∥∥ ∞∑
i=i0

∑
j∈N

χ2Bi,j

∥∥∥∥p
Kα,p
q(·)(Rn)

.
∞∑
i=i0

∥∥∥∥∑
j∈N

χ2Bi,j

∥∥∥∥p
Kα,p
q(·)(Rn)

.
∞∑
i=i0

2−ip sup
i∈Z

2ip
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p‖f‖p
WHKα,p

q(·),s,at(Rn)
,

which implies that

(5.6) βI2 . ‖f‖WHKα,p
q(·),s,at(Rn).
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For I3, by the fact that d as in Definition 6, we choose

r2 ∈ (max{ n

n+ d+ 1
,

α

δ2(n+ d+ 1)
}, 1).

Then by Lemma 2.5 and (5.3), we have

I3 .

∥∥∥∥χ{x∈(Ai0 )c:
∑∞
i=i0

∑
j∈N λi,j(ai,j)

∗(x)> β
2 }

∥∥∥∥p
Kα,p
q(·)(Rn)

. β−r2p
∥∥∥∥ ∞∑
i=i0

∑
j∈N

[λi,j(ai,j)
∗]r2χ(Ai0 )c

∥∥∥∥p
Kα,p
q(·)(Rn)

. β−r2p
∞∑
i=i0

2ir2p
∥∥∥∥∑
j∈N

[‖χBi,j‖Kα,p
q(·)(Rn)(ai,j)

∗]r2χ(Ai0 )c

∥∥∥∥p
Kα,p
q(·)(Rn)

. β−r2p
∞∑
i=i0

2ir2p
∥∥∥∥{∑

j∈N
[M(χBi,j )]

r2(n+d+1)
n

} n
r2(n+d+1)

∥∥∥∥
r2(n+d+1)p

n

K
αn

r2(n+d+1)
,
r2(n+d+1)p

n

r2(n+d+1)q(·)
n

(Rn)

. β−r2p
∞∑
i=i0

2ir2p2−ip sup
i∈Z

2ip
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p‖f‖p
WHKα,p

q(·),s,at(Rn)
,

that is

(5.7) βI3 . ‖f‖WHKα,p
q(·),s,at(Rn).

Combining (5.5), (5.6) and (5.7), we obtain

‖f‖WHKα,p
q(·)(Rn) = sup

β∈(0,∞)

β‖χ{x∈Rn:|f∗(x)|>β}‖Kα,p
q(·)(Rn)

. sup
β∈(0,∞)

β(I1 + I2 + I3) . ‖f‖WHKα,p
q(·),s,at(Rn),

which implies f ∈WHKα,p
q(·)(R

n).

Step 2: In this step we show that WHKα,p
q(·)(R

n) ⊂WHKα,p
q(·),s,at(R

n). To

prove the claim, it suffices to show that WHKα,p
q(·)(R

n) ⊂WHKα,p
q(·),∞,at(R

n),

due to the obvious fact that each (α, p, q(·),∞)-atom is also an (α, p, q(·), s)-
atom for any s ∈ (1,∞).

We need the following lemma, which was obtained in [3, p. 219] (see also
[32, Lemma 4.6]).

Lemma 5.3. Let ψ ∈ S(Rn) be such that supp ψ ⊂ B(~0n, 1) and
´
ψ(x)dx = 0.

Then there exists a function φ ∈ S(Rn) such that φ̂ has compact support away

from the origin and, for all x ∈ Rn \ {~0n},ˆ ∞
0

ψ̂(tx)φ̂(tx)
dt

t
= 1.
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Recall that, for any d ∈ Z+, q(·) ∈ P(Rn), a locally integrable function f on
Rn is said to belong the Campanato space L1,q(·),d(Rn) if

‖f‖L1,q(·),d(Rn) := sup
Q⊂Rn

1

‖χQ‖Lq(·)

ˆ
Q

|f(x)− PdQf(x)|dx <∞,

where PdQ denotes the unique polynomial P having degree at most d and

satisfies that, for any polynomial R on Rn with order at most d,
´
Q

[f(x) −
P (x)]R(x)dx = 0.

Now, let ψ ∈ S(Rn) be such that supp ψ ⊂ B(~0n, 1),
´
ψ(x)xβdx = 0 for all

β ∈ Zn+ with |β| ≤ d, then by Lemma 5.3 there exists φ ∈ S(Rn) such that φ̂

has compact support away from the origin and, for all x ∈ Rn \ {~0n},ˆ ∞
0

ψ̂(tx)φ̂(tx)
dt

t
= 1.

Define a function η on Rn by setting, for all x ∈ Rn \ {~0n},

η̂(x) =

ˆ ∞
1

ψ̂(tx)φ̂(tx)
dt

t

and η̂(~0n) = 1. Then, by [3, p. 219], we know that η is infinitely differentiable,
has compact support and equals to 1 near the origin.

Let x0 = (2, . . . , 2) ∈ Rn and f ∈ WHKα,p
q(·)(R

n). Following [3], for all

x ∈ Rn, set

φ̃(x) = φ(x− x0), ψ̃(x) = ψ(x+ x0),

F (x, t) = f ∗ φ̃t(x) and G(x, t) = f ∗ ηt(x).

Then by [3, p. 220], we have

f(·) =

ˆ ∞
0

ˆ
Rn
F (y, t)ψ̃(· − y)

dydt

t
in S ′(Rn).

For all x ∈ Rn, let

M∇f(x) = sup
t∈(0,∞),|y−x|≤3(|x0|+1)t

(|F (y, t)|+ |G(y, t)|).

By Remark 4.6, we have M∇f ∈WKα,p
q(·)(R

n) and

(5.8) ‖M∇f‖WKα,p
q(·)(Rn) . ‖f‖WHKα,p

q(·)(Rn).

For all i ∈ Z, set Ωi = {x ∈ Rn : M∇f(x) > 2i}, M∇f is lower semi continuous
(implies Ωi is open). Since Ωi is a proper open subset of Rn, by the Whitney
decomposition we know that there exists a sequence {Qi,j}j∈N of cubes such
that for all i ∈ Z,

(i) ∪j∈NQi,j = Ωi and {Qi,j}j have disjoint interiors;
(ii) for all j ∈ N,

√
nlQi,j ≤ d(Qi,j ,Ω

c
i ) ≤ 4

√
nlQi,j , where lQi,j denotes the

length of the cube Qi,j and d(Qi,j ,Ω
c
i ) = inf{|x−y| : x ∈ Qi,j , y ∈ Ωci};
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(iii) for any j, k ∈ N, if the boundaries of two cubes Qi,j and Qi,k touch,

then 1
4 ≤

lQi,j
lQi,k

≤ 4;

(iv) for a given j ∈ N, there exist at most 12n different cubes Qi,k that
touch Qi,j .

Now for any ε ∈ (0,∞), j ∈ N, i ∈ Z and x ∈ Rn, let

d(x,Ωci ) = inf{|x− y| : y ∈ Ωci};

Ω̃i = {(x, t) ∈ Rn+1
+ : 0 < 2t(|x0|+ 1) < d(x,Ωci )};

Q̃i,j = {(x, t) ∈ Rn+1
+ : x ∈ Qi,j , (x, t) ∈ Ω̃i \ Ω̃i+1}

and

bεi,j =

ˆ ∞
ε

ˆ
Rn
χQ̃i,j (y, t)F (y, t)ψ̃t(x− y)

dydt

t
.

By the same argument used in [3, pp. 221–222] (see also [20, p. 16]), we conclude
that there exist positive constants c1 and c2 > 0 such that for all ε ∈ (0,∞),
i ∈ Z and j ∈ N, supp bεi,j ⊂ c1Qi,j , ‖bεi,j‖L∞(Rn) ≤ c22i,

´
Rn b

ε
i,j(x)xβdx = 0

for all β ∈ Zn+ satisfying |β| ≤ d and

f = lim
ε→0

∑
i∈Z,j∈N

bεi,j in S ′(Rn).

Moreover, by similar argument that used in [20, p. 16] (see also [32, p. 2855]), we
find that there exist {bi,j}i∈Z,j∈N ⊂ L∞(Rn) and a sequence {εk}k∈N ⊂ (0,∞)
such that εk → 0 as k →∞ and for any g ∈ L1(Rn),

lim
k→∞

〈bεki,j , g〉 = 〈bi,j , g〉,

supp bi,j ⊂ c1Qi,j , ‖bi,j‖L∞(Rn) ≤ c22i. For all β ∈ Zn+ satisfying |β| ≤ d,ˆ
Rn
bi,j(x)xβdx = 〈bi,j , xβχc1Qi,j 〉 = lim

k→∞

ˆ
Rn
bεki,j(x)xαdx = 0.

Next we show that

(5.9) lim
k→∞

∑
i∈Z

∑
j∈N

bεki,j =
∑
i∈Z

∑
j∈N

bi,j in S ′(Rn).

Let ϕ ∈ S(Rn). By the estimate in [32, pp. 2855–2856], Remark 2.7 and (5.8),
for k,N ∈ N, we get∑

|i|>N

∑
j∈N

[|〈bεki,j , ϕ〉|+ |〈bi,j , ϕ〉|]

. 2−N‖ϕ‖L1(Rn) + ‖ϕ‖L
1,
q(·)
r
,d

[sup
i∈Z

2i‖χΩi‖Lq(·)(Rn)]
r
∞∑

i=N+1

2−i(r−1)

. 2−N‖ϕ‖L1(Rn) + ‖ϕ‖L
1,
q(·)
r
,d

[sup
i∈Z

2i‖χΩi‖Kα,p
q(·)(Rn)]

r
∞∑

i=N+1

2−i(r−1)
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. 2−N‖ϕ‖L1(Rn) + ‖ϕ‖L
1,
q(·)
r
,d

[‖M∇f‖WKα,p
q(·)(Rn)]

r2−N(r−1)

. 2−N‖ϕ‖L1(Rn) + 2−N(r−1)‖ϕ‖L
1,
q(·)
r
,d
‖f‖rWHKα,p

q(·)(Rn),

which tends to 0 as N → ∞, where r is chosen such that r > max{q+, 1}.
Above we used (5.8) and the fact that, for any ϕ ∈ S(Rn), ‖ϕ‖L

1,
q(·)
r ,d

is finite

(see [34, Lemma 2.8]).
Similarly, we have ∑

|i|≤N

∑
j∈N

[|〈bεki,j , ϕ〉|+ |〈bi,j , ϕ〉|] <∞.

Then using the same argument as in [22, p. 651], we get (5.9).
For i ∈ Z and j ∈ N, let Bi,j be the ball having the same center as Qi,j with

radius 5
√
nc1lQi,j ,

ai,j =
bi,j

c22i‖χBi,j‖Kα,p
q(·)(Rn)

and λi,j = c22i‖χBi,j‖Kα,p
q(·)(Rn).

Then ai,j is an (α, p, q(·),∞)-atom associated to Bi,j and

f =
∑
i∈Z

∑
j∈N

λi,jai,j in S ′(Rn).

Moreover, by Remark 2.8 and (5.8), we find

‖f‖WHKα,p
q(·),∞,at(Rn) . sup

i∈Z
2i
∥∥∥∥(∑

j∈N
χBi,j

) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

. sup
i∈Z

2i
∥∥∥∥(∑

j∈N
χQi,j

) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

. sup
i∈Z

2i‖χΩi‖Kα,p
q(·)(Rn)

. ‖M∇f‖WKα,p
q(·)(Rn)

. ‖f‖WHKα,p
q(·)(Rn),

which completes the proof. �

Remark 5.4. The space WHK̇
α,p

q(·),s,at(Rn) is defined by the same way as in

Definition 7 via replacing the norm of Kα,p
q(·)(R

n) by the norm of K̇α,p
q(·)(R

n) and

all the results in this section are also valid on this space.

6. Molecular characterizations

In this section, we establish the molecular characterizations of the weak
Herz-type Hardy spaces with variable exponents. We begin with introducing
the notion of (α, p, q(·), s, ε)-molecule.
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Definition 8. Let q(·) ∈ P(Rn), 0 < p < ∞, α ∈ (0,∞), s ∈ (1,∞], d ∈
(max{ nq− −n− 1, αδ2 −n− 1},∞)∩Z+, and ε ∈ (0,∞). A measurable function

m is called an (α, p, q(·), s, ε)-molecule associated with some ball B ⊂ Rn if

(i) for each j ∈ N, ‖m‖Ls(Uj(B)) ≤ 2−jε|Uj(B)| 1s ‖χB‖−1
Kα,p
q(·)(Rn)

, where

U0(B) := B and, for all j ∈ N, Uj(B) := (2jB) \ (2j−1B);
(ii)
´
Rn m(x)xβdx = 0 for all β ∈ Zn+ with |β| ≤ d.

Definition 9. Let q(·) ∈ P(Rn), 0 < p < ∞, α ∈ (0,∞), s ∈ (1,∞] and
ε ∈ (0,∞). The molecular weak Herz-type Hardy space with variable exponent
WHKα,p,ε

q(·),s,mol(R
n) is defined as

WHKα,p,ε
q(·),s,mol(R

n) :=

{
f ∈ S ′(Rn) : f =

∑
i∈Z

∑
j∈N

λi,jmi,j ∈ S ′(Rn)

}
,

where {mi,j}i∈Z,j∈N is a sequence of (α, p, q(·), s, ε)-molecules, associated with
balls {Bi,j}i∈Z,j∈N, satisfying that there exists a positive constant c ∈ (0, 1],
such that, for all x ∈ Rn and i ∈ Z,

∑
j∈N χcBi,j(x) ≤ A with A being a

positive constant independent of x and i and, for all i ∈ Z and j ∈ N, λi,j :=

Ã2i‖χBi,j‖Kα,p
q(·)(Rn) with Ã being a positive constant independent of i and j.

Moreover, define

‖f‖WHKα,p,ε
q(·),s,mol(Rn) := inf

[
sup
i∈Z

∥∥∥∥(∑
j∈N

[
λi,jχBi,j

‖χBi,j‖Kα,p
q(·)(Rn)

]b) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

]
,

where b ∈ (0, 1) and the infimum is taken over all decompositions of f as above.

Theorem 6.1. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1,
α ∈ (0,∞), s ∈ (max{q+,

bnδ1
nδ1−αb},∞] and ε ∈ (n+ d+ 1,∞). Then

‖f‖WHKα,p,ε
q(·),s,mol(Rn) ∼ ‖f‖WHKα,p

q(·)(Rn).

Proof. Notice that an (α, p, q(·),∞)-atom is also an (α, p, q(·), s, ε)-molecule.
Then by Theorem 5.1, we have

WHKα,p
q(·)(R

n) ⊂WHKα,p
q(·),∞,at(R

n) ⊂WHKα,p,ε
q(·),s,mol(R

n).

Therefore, it suffices to show WHKα,p,ε
q(·),s,mol(R

n) ⊂WHKα,p
q(·)(R

n).

Letm be any fixed (α, p, q(·), s, ε)-molecule associated with a ballB :=B(xB,rB ).
We now claim that m is an infinite linear combination of (α, p, q(·), s)-atoms.
To this end, for all k ∈ Z+, let mk := mχUk(B) with Uk(B) as in Definition
8, and Pk be the linear vector space generated by the set {xγχUk(B)}|γ|≤d of
polynomials with d as in Definition 8. It is well known (see, for example, [30])
that, for any given k ∈ Z+, there exists a unique polynomial Pk ∈ Pk such
that, for all multi-indices β with |β| ≤ d,

(6.1)

ˆ
Rn
xβ [mk(x)− Pk(x)]dx = 0,
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where Pk is given by the following formula

(6.2) Pk :=
∑

β∈Zn+,|β|≤d

[ ˆ
Rn

1

|Uk(B)|
xβmk(x)dx

]
Qβ,k

and Qβ,k is the unique polynomial in Pk satisfying that, for all multi-indices β
with |β| ≤ d and the Kronecker delta δγ,β ,ˆ

Rn
xγQβ,k(x)dx = |Uk(B)|δγ,β ,

where, when γ = β, δγ,β := 1 and, when γ 6= β, δγ,β := 0.
It was proved in [30, p. 83] that, for all k ∈ Z+,

sup
x∈Uk(B)

|Pk(x)| . 1

|Uk(B)|
‖mk‖L1(Rn).

From this and the Hölder inequality, we deduce that, for all k ∈ Z+,

‖mk − Pk‖Ls(Uk(B)) ≤ ‖mk‖Ls(Uk(B)) + ‖Pk‖Ls(Uk(B))

≤ C̃‖mk‖Ls(Uk(B))

≤ C̃2−kε|2kB| 1s ‖χB‖−1
Kα,p
q(·)(Rn)

,(6.3)

where C̃ is a positive constant independent of m, B and k. For all k ∈ Z+, let

µk :=
C̃2−kε‖χ2kB‖Kα,p

q(·)(Rn)

‖χB‖Kα,p
q(·)(Rn)

and

ak :=
2kε‖χB‖Kα,p

q(·)(Rn)(mk − Pk)

C̃‖χ2kB‖Kα,p
q(·)(Rn)

.

This, combined with (6.1), (6.3) and the fact that supp(mk − Pk) ⊂ Uk(B),
implies that, for each k ∈ Z+, ak is an (α, p, q(·), s)-atom and

(6.4)

∞∑
k=0

(mk − Pk) =

∞∑
k=0

µkak

is an infinite linear combination of (α, p, q(·), s)-atoms.
Moreover, for any j ∈ Z+ and l ∈ Zn+, let

N j
l :=

∞∑
k=j

ˆ
Uk(B)

mk(x)xldx.

Then, for any l ∈ Zn+ with |l| ≤ d, it holds that

N0
l :=

∞∑
k=0

ˆ
Uk(B)

mk(x)xldx =

ˆ
Rn
m(x)xldx = 0.
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From this and (6.2), we deduce that

∞∑
k=0

Pk =
∑

l∈Zn+,|l|≤d

∞∑
k=0

|Uk(B)|−1Ql,k

ˆ
Rn
mk(x)xldx

=
∑

l∈Zn+,|l|≤d

∞∑
k=0

Nk+1
l [|Uk+1(B)|−1Ql,k+1χUk+1(B)(x)− |Uk(B)|−1Ql,kχUk(B)(x)]

=:
∑

l∈Zn+,|l|≤d

∞∑
k=0

bkl .

By an argument similar to that used in the proof of [15, (4.35)], we deduce
that, for any k ∈ Z+ and l ∈ Zn+ with |l| ≤ d,

(6.5) ‖bkl ‖L∞(Rn) . 2−kε‖χB‖−1
Kα,p
q(·)(Rn)

and suppbkl ⊂ 2k+1B;

moreover, for any γ ∈ Zn+ with |γ| ≤ d,
´
Rn b

k
l (x)xγdx = 0. For all k ∈ Z+ and

l ∈ Zn+ with |l| ≤ d, let

µkl := 2−kε
‖χ2k+1B‖Kα,p

q(·)(Rn)

‖χB‖Kα,p
q(·)(Rn)

and

akl := 2kεbkl
‖χB‖Kα,p

q(·)(Rn)

‖χ2k+1B‖Kα,p
q(·)(Rn)

.

Then, for any k ∈ Z+ and l ∈ Zn+ with |l| ≤ d, by (6.5) and the definition of

akl , we conclude that akl is an (α, p, q(·),∞)-atom supported on 2k+1B up to a
positive constant multiple. Therefore,

(6.6)

∞∑
k=0

Pk =
∑

l∈Zn+,|l|≤d

∞∑
k=0

µkl a
k
l

is an infinite linear combination of (α, p, q(·),∞)-atoms.
Combining (6.4) and (6.6), we find that

(6.7) m =

∞∑
k=0

mk =

∞∑
k=0

(mk − Pk) +

∞∑
k=0

Pk =

∞∑
k=0

µkak +
∑

l∈Zn+,|l|≤d

∞∑
k=0

µkl a
k
l .

This shows that an (α, p, q(·), s, ε)-molecule can be divided into an infinite linear
combination of (α, p, q(·), s)-atoms.

To prove f ∈WHKα,p
q(·)(R

n), it suffices to show that, for any β ∈ (0,∞)

(6.8) β‖χ{x∈Rn:|f∗(x)|>β}‖Kα,p
q(·)(Rn) . ‖f‖WHKα,p,ε

q(·),s,mol(Rn).

To simplify the notation, let f∗ =:MN (f) with N as Theorem 4.7.
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For any given β ∈ (0,∞), we choose i0 ∈ Z such that 2i0 ≤ β < 2i0+1 and
write

f =

i0−1∑
i=−∞

∑
j∈N

λi,jmi,j +

∞∑
i=i0

∑
j∈N

λi,jmi,j = f1 + f2.

Moreover, it holds true that

‖χ{x∈Rn:|f∗(x)|>β}‖Kα,p
q(·)(Rn) . ‖χ{x∈Rn:|f∗1 (x)|> β

2 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Rn:|f∗2 (x)|> β
2 }
‖Kα,p

q(·)(Rn)

= I1 + I2.

We first estimate I1. To this end, we need another estimate for (mi,j)
∗. From

(6.7), we deduce that, for all i ∈ Z and j ∈ N, there exists a sequences of mul-
tiples of (α, p, q(·), s)-atoms, {ali,j}l∈Z+

, associated with balls {2l+1Bi,j}l∈Z+

such that

‖ali,j‖Ls(Rn) .
2−lε|2l+1Bi,j |

1
s

‖χBi,j‖Kα,p
q(·)(Rn)

and mi,j =
∑
l∈Z+

ali,j almost everywhere in Rn. Then, for all i ∈ Z∩(−∞, i0−
1] and j ∈ N, we have

(mi,j)
∗ ≤

∑
l∈Z+

(ali,j)
∗ =

∑
l∈Z+

∑
k∈Z+

(ali,j)
∗χUk(2lBi,j)

=:
∑
l∈Z+

2∑
k=0

Jl,k +
∑
l∈Z+

∞∑
k=3

Jl,k,(6.9)

where Uk(2lBi,j) is defined as Definition 8 with B replaced by 2lBi,j . Thus, it
follows that

‖χ{x∈Rn:|f∗1 (x)|> β
2 }
‖Kα,p

q(·)(Rn)

≤ ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N λi,j(mi,j)

∗(x)> β
2 }
‖Kα,p

q(·)(Rn)

. ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N

∑
l∈Z+

∑2
k=0 λi,jJl,k>

β
4 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N

∑
l∈Z+

∑∞
k=3 λi,jJl,k>

β
4 }
‖Kα,p

q(·)(Rn)

= I1,1 + I1,2.

For I1,1, by an argument similar to that used in the proof of (5.2), we deduce
that

(6.10) βI1,1 . ‖f‖WHKα,p,ε
q(·),s,mol(Rn).

On the other hand, by an argument similar to that used in the proof of
[32, (5.17)], we deduce that, for any i ∈ Z, j ∈ N, l ∈ Z+, k ∈ [3,∞) ∩ Z+,
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x ∈ Uk(2lBi,j) and y ∈ 2l+1Bi,j ,

(6.11) Jl,k .
2−lε−k(n+d+1)

‖χBi,j‖Kα,p
q(·)(Rn)

χUk(2lBi,j)(x),

which, combined with (6.9), Remark 2.8, the fact that d as in Definition 8 and
via choosing p < r < 1 and r1 ∈ ( n

n+d+1 ,min{1, nδ2αr }), implies that

βpIp1,2 . β(1− 1
r )p

∥∥∥∥ i0−1∑
i=−∞

∑
j∈N

∑
l∈Z+

∞∑
k=3

2i2−lε2−k(n+d+1)χUk(2lBi,j)

∥∥∥∥
p
r

K
αr,

p
r

q(·)
r

(Rn)

. β(1− 1
r )p

∑
l∈Z+

∞∑
k=3

2−lε
p
r 2−k(n+d+1) pr

i0−1∑
i=−∞

2i
p
r

∥∥∥∥∑
j∈N

χUk(2lBi,j)

∥∥∥∥
p
r

K
αr,

p
r

q(·)
r

(Rn)

. β(1− 1
r )p

∑
l∈Z+

∞∑
k=3

2−lε
p
r 2−k(n+d+1) pr 2

n(k+l)
r1

p
r

i0−1∑
i=−∞

2i
p
r

∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
p
r

K
αr,

p
r

q(·)
r

(Rn)

. β(1− 1
r )p sup

i∈Z
2ip
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
p
r

K
αr,

p
r

q(·)
r

(Rn)

i0−1∑
i=−∞

2ip(
1
r−1)

. β(1− 1
r )p sup

i∈Z
2ip
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥
p
r

K
αr,

p
r

q(·)
r

(Rn)

∼ ‖f‖p
WHKα,p,ε

q(·),s,mol(Rn)
,

that is

(6.12) βI1,2 . ‖f‖WHKα,p,ε
q(·),s,mol(Rn).

Combining (6.10) and (6.12), we deduce that

(6.13) βI1 . ‖f‖WHKα,p,ε
q(·),s,mol(Rn).

We next estimate I2. By (6.9), we know that

I2 . ‖χ{x∈Rn:
∑∞
i=i0

∑
j∈N

∑
l∈Z+

∑2
k=0 λi,jJl,k>

β
4 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Rn:
∑∞
i=i0

∑
j∈N

∑
l∈Z+

∑∞
k=3 λi,jJl,k>

β
4 }
‖Kα,p

q(·)(Rn)

= I2,1 + I2,2.

For any b ∈ (0, p), let q̃ ∈ (1,min{ s

max{q+, bnδ1
nδ1−αb

}
, 1
b}) and a ∈ (1 − 1

q ,∞).

Then by similar argument to that used in the proof of (6.10), we obtain

Ip2,1 . 2−i0q̃(1−a)p
i0−1∑
i=−∞

2[(1−a)q̃−1]ip sup
i∈Z

2ip
∥∥∥∥(∑

j∈N
χBi,j

) 1
b
∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p‖f‖p
WHKα,p

q(·),s,mol(Rn)
,
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that is

(6.14) βI2,1 . ‖f‖WHKα,p,ε
q(·),s,mol(Rn).

On the other hand, let 1 < q < 1
p and a ∈ (1 − 1

q ,∞). By the Hölder

inequality, we find that, for all x ∈ Rn,

∞∑
i=0

∑
j∈N

∑
l∈Z+

∞∑
k=3

λi,jJl,k ≤
( ∞∑
i=0

2iaq
′
) 1
q′
{ ∞∑
i=0

2−iaq
[∑
j∈N

∑
l∈Z+

∞∑
k=3

λi,jJl,k

]q} 1
q

=
2i0a

(2aq′ − 1)
1
q′

{ ∞∑
i=0

2−iaq
[∑
j∈N

∑
l∈Z+

∞∑
k=3

λi,jJl,k

]q} 1
q

.

By the fact that d as in Definition 8, we choose r ∈ ( n
n+d+1 ,min{1, nδ2qα }).

Then by (6.11) and Remark 2.8, we find that

Ip2,2 .
∥∥∥∥χ{x∈Rn: 2i0a

(2aq
′−1)

1
q′

[
∑∞
i=i0

2−iaq{
∑
j∈N

∑
l∈Z+

∑∞
k=3 λi,jJl,k}q ]

1
q >2i0−2}

∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q(1−a)p

∥∥∥∥ ∞∑
i=i0

2−iaq
[∑
j∈N

∑
l∈Z+

∞∑
k=3

λi,jJl,k

]q∥∥∥∥p
Kα,p
q(·)(Rn)

. 2−i0q(1−a)p

∥∥∥∥ ∞∑
i=i0

2i(1−a)
∑
l∈Z+

∞∑
k=3

2−lε2−k(n+d+1)
∑
j∈N

χUk(2lBi,j)

∥∥∥∥pq
K
α
q
,pq

q(·)q (Rn)

. 2−i0q(1−a)p
∞∑
i=i0

2i(1−a)pq
∑
l∈Z+

∞∑
k=3

2−lεpq2−k(n+d+1)pq

∥∥∥∥∑
j∈N

χUk(2lBi,j)

∥∥∥∥pq
K
α
q
,pq

q(·)q (Rn)

. 2−i0q(1−a)p
∞∑
i=i0

2i(1−a)pq
∑
l∈Z+

∞∑
k=3

2−lεpq2−k(n+d+1)pq2
n(k+l)
r pq

∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥pq
K
α
q
,pq

q(·)q (Rn)

. 2−i0q(1−a)p
∞∑
i=i0

2i(1−a)pq

∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥pq
K
α
q
,pq

q(·)q (Rn)

. 2−i0q(1−a)p
∞∑
i=i0

2i[(1−a)pq−p] sup
i∈Z

2ip
∥∥∥∥∑
j∈N

χBi,j

∥∥∥∥p
Kα,p
q(·)(Rn)

. β−p‖f‖p
WHKα,p

q(·),s,at(Rn)
,

that is

(6.15) βI2,2 . ‖f‖WHKα,p,ε
q(·),s,mol(Rn).

Combining (6.14) and (6.15), implies that βI2 . ‖f‖WHKα,p,ε
q(·),s,mol(Rn). This,

together with (6.13), shows that (6.8) holds true and this finishes the proof. �

Remark 6.2. The space WHK̇
α,p,ε

q(·),s,mol(Rn) is defined by the same way as in

Definition 9 via replacing the norm of Kα,p
q(·)(R

n) by the norm of K̇α,p
q(·)(R

n) and

all the results in this section are also valid on this space.
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7. Littlewood-Paley function characterizations

In this section, as an application of the atomic decomposition, we provide
several equivalent characterizations of the weak Herz-type Hardy spaces with
variable exponents via the Lusin area function, the Littlewood-Paley g-function
and the Littlewood-Paley g∗λ-function.

Let d be as in Definition 6 and φ ∈ S(Rn) be a radial function satisfying

(7.1) suppφ ⊂ {x ∈ Rn : |x| ≤ 1},

(7.2)

ˆ
Rn
φ(x)xβdx = 0 for all β ∈ Zn+ with |β| ≤ d

and

(7.3)

ˆ ∞
0

|φ̂(εt)|2 dt
t

= 1 for all ε ∈ Rn \ {0}.

For all f ∈ S ′(Rn), the Littlewood-Paley g-function, the Lusin area function
and the Littlewood-Paley g∗λ-function with λ ∈ (0,∞) are defined, respectively,
by setting, for all x ∈ Rn,

g(f)(x) =

(ˆ ∞
0

|f ∗ φt(x)|2 dt
t

) 1
2

,

S(f)(x) =

(ˆ
Γ(x)

|f ∗ φt(x)|2 dydt
tn+1

) 1
2

and

g∗λ(f)(x) =

(ˆ ∞
0

ˆ
Rn

(
t

t+ |x− y|
)λn|f ∗ φt(y)|2 dydt

tn+1

) 1
2

,

where, for any x ∈ Rn, Γ(x) = {(y, t) ∈ Rn × (0,∞) : |y − x| < t} and, for any
t ∈ (0,∞), φt(·) = t−nφ(·t−1).

For all t, a ∈ (0,∞) and x ∈ Rn, let

(φ∗t f)a(x) = sup
y∈Rn

|φt ∗ f(x+ y)|
(1 + |y|

t )a
.

Then, we define

ga,∗(f)(x) =

(ˆ ∞
0

[(φ∗t f)a(x)]2
dt

t

) 1
2

.

Recall that f ∈ S ′(Rn) is said to vanish weakly at infinity if, for every
φ ∈ S(Rn), f ∗ φt → 0 in S ′(Rn) as t→∞ (see [11, p. 50]).

Lemma 7.1. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1 and
α ∈ (0,∞). If f ∈WHKα,p

q(·)(R
n), then f vanishes weakly at infinity.
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Proof. Let f ∈ WHKα,p
q(·)(R

n). For φ ∈ S(Rn), x ∈ Rn, t ∈ (0,∞) and

N ∈ ( n
q−

+n+ 1,∞), it follows from [34, p. 1553], Remark 4.6 and Remark 2.7

that

min{|f ∗ φt(x)|q− , |f ∗ φt(x)|q+}

.
1

B(x, t)
max{‖MNf‖q−Lq(·)(Rn)

, ‖MNf‖q+Lq(·)(Rn)
}

.
1

B(x, t)
max{‖MNf‖q−Kα,p

q(·)(Rn)
, ‖MNf‖q+Kα,p

q(·)(Rn)
} → 0

as t → ∞, which implies that f vanishes weakly at infinity. This finishes the
proof. �

Theorem 7.2. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ <∞, 0 < p < 1 and α ∈
(0,∞). Then f ∈WHKα,p

q(·)(R
n) if and only if f ∈ S ′(Rn), f vanishes weakly

at infinity and S(f) ∈WKα,p
q(·)(R

n). Moreover, for all f ∈WHKα,p
q(·)(R

n),

‖S(f)‖WKα,p
q(·)(Rn) ∼ ‖f‖WHKα,p

q(·)(Rn).

Proof. For f ∈ S ′(Rn) such that f vanishes weakly at infinity and S(f) ∈
WKα,p

q(·)(R
n), we need to prove that f ∈WHKα,p

q(·),s,at(R
n) for some s and d as

in Theorem 5.1 and

‖f‖WHKα,p
q(·)(Rn) ∼ ‖f‖WHKα,p

q(·),s,at(Rn) . ‖S(f)‖WKα,p
q(·)(Rn).

Denote by Q the set of all dyadic cubes in Rn. For any i ∈ Z, let

Ωi = {x ∈ Rn : S(f)(x) > 2i}

and

Qi =

{
Q ∈ Q : |Q ∩ Ωi| ≥

|Q|
2

and |Q ∩ Ωi+1| <
|Q|
2

}
.

For all i ∈ Z, we use {Qi,j}j to denote the maximal dyadic cubes in Qi, namely,
there does not exist Q ∈ Qi such that Qi,j & Q. For any Q ∈ Q, let lQ denote
its side length and

Q+ = {(y, t) ∈ Rn+1
+ , y ∈ Q,

√
nlQ < t ≤ 2

√
nlQ}

and, for all i ∈ Z and j, let

Bi,j = ∪Q∈Qi,Q⊂Qi,jQ+.

Here we point out that Q+ for different Q ∈ Qi and Q ⊂ Qi,j are mutually
disjoint. For i ∈ Z, j and x ∈ Rn, set

λi,j = 2i‖χ4
√
nQi,j‖Kα,p

q(·)(Rn)

and

ai,j(x) =
1

λi,j

∑
Q∈Qi,Q⊂Qi,j

ˆ
Q+

f ∗ φt(y)φt(x− y)
dydt

t
,
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where φ is as in (7.1), (7.2) and (7.3). It follows from [22, Theorem 4.5] and
[20, (8.5)] that

f =
∑
i,j

λi,jai,j in S ′(Rn).

By [32, Theorem 6.1], we find that for any i ∈ Z and j,

suppai,j ⊂ Q̃i,j := 4
√
nQi,j ;ˆ

Rn
ai,j(x)xβdx = 0, |β| ≤ d;

and

‖ai,j‖Ls(Rn) .
|Q̃i,j |

1
s

‖χQ̃i,j‖Kα,p
q(·)(Rn)

.

This implies that ai,j is an (α, p, q(·), s)-atom up to a harmless constant mul-

tiple. Moreover, by Remark 2.8, |Qi,j ∩ Ωi| ≥ |Qi,j |2 and the fact that {Qi,j}j
have disjoint interiors, we find that, for any i ∈ Z,∥∥∥∥(∑

j

(
λi,jχQ̃i,j

‖χQ̃i,j‖Kα,p
q(·)(Rn)

)b) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

. 2i
∥∥∥∥(∑

j

χQ̃i,j

) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

. 2i
∥∥∥∥(∑

j

χQi,j

) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

. 2i
∥∥∥∥(∑

j

χQi,j∩Ωi

) 1
b
∥∥∥∥
Kα,p
q(·)(Rn)

. 2i‖χΩi‖Kα,p
q(·)(Rn)

. ‖S(f)‖WKα,p
q(·)(Rn).

Conversely, take f ∈ WHKα,p
q(·)(R

n). Obviously, by Lemma 7.1, we know

that f vanishes weakly at infinity. Due to Theorem 5.1, we can decompose f
as follows

f =

i0−1∑
i=−∞

∑
j∈N

λi,jai,j +

∞∑
i=i0

∑
j∈N

λi,jai,j = f1 + f2,

where {λi,j}i∈Z,j∈N and {ai,j}i∈Z,j∈N are as in Theorem 5.1. Thus, we obtain

‖χ{x∈Rn:S(f)(x)>β}‖Kα,p
q(·)(Rn) . ‖χ{x∈Rn:S(f1)(x)> β

2 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Ai0 :S(f2)(x)> β
2 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈(Ai0 )c:S(f2)(x)> β
2 }
‖Kα,p

q(·)(Rn)

= I1 + I2 + I3,

where Ai0 := ∪∞i=i0 ∪j∈N (4Bi,j) and {Bi,j}i∈Z,j∈N are the balls as in Theorem
5.1.
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For I1, it is easy to see that

I1 . ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N λi,jS(ai,j)(x)χ4Bi,j

(x)> β
4 }
‖Kα,p

q(·)(Rn)

+ ‖χ{x∈Rn:
∑i0−1
i=−∞

∑
j∈N λi,jS(ai,j)(x)χ(4Bi,j)

c (x)> β
4 }
‖Kα,p

q(·)(Rn)

= I1,1 + I1,2.

For I1,1, by the boundedness of S on Lr(Rn) (1 < r <∞), Lemma 5.2, Remark
2.8 and an argument similar to that used in the proof of (5.2), we conclude
that

(7.4) βI1,1 . ‖f‖WHKα,p
q(·),s,at(Rn).

On the other hand, by an argument similar to that used in the proof of
[32, (6.15)], we deduce that, for any i ∈ Z, j ∈ N, and x ∈ (4Bi,j)

c,

|S(ai,j)(x)| . (MχBi,j (x))
n+d+1
n ‖χBi,j‖−1

Kα,p
q(·)(Rn)

.

From this, the Hölder inequality, Lemma 2.3, Lemma 2.5 and an argument simi-
lar to that used in the proof of (5.4), we deduce that βI1,2 . ‖f‖WHKα,p

q(·),s,at(Rn).

Combining this with (7.4), we conclude that

(7.5) βI1 . ‖f‖WHKα,p
q(·),s,at(Rn).

By an argument similar to that used in the proof of (5.6), we also find that

(7.6) βI2 . ‖f‖WHKα,p
q(·),s,at(Rn).

Finally, for I3, by Lemma 2.3, Lemma 2.5 and an argument similar to that
used in the proof of (5.7), we deduce that

(7.7) βI3 . ‖f‖WHKα,p
q(·),s,at(Rn).

Combining (7.5), (7.6) and (7.7), we conclude that

(7.8) ‖S(f)‖WKα,p
q(·)(Rn) . ‖f‖WHKα,p

q(·)(Rn),

which completes the proof. �

Theorem 7.3. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ <∞, 0 < p < 1 and α ∈
(0,∞). Then f ∈WHKα,p

q(·)(R
n) if and only if f ∈ S ′(Rn), f vanishes weakly

at infinity and g(f) ∈WKα,p
q(·)(R

n). Moreover, for all f ∈WHKα,p
q(·)(R

n),

‖g(f)‖WKα,p
q(·)(Rn) ∼ ‖f‖WHKα,p

q(·)(Rn).

Proof. Let us prove first that ‖g(f)‖WKα,p
q(·)(Rn) ∼ ‖ga,∗(f)‖WKα,p

q(·)(Rn).

By definition we easily see that g(f) . ga,∗(f), then

‖g(f)‖WKα,p
q(·)(Rn) . ‖ga,∗(f)‖WKα,p

q(·)(Rn).
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Conversely, by choosing a ∈ ( n
min{2,q−} ,∞), it follows that there exists r ∈

(0,min{2, q−}) such that a ∈ (nr ,∞). Choose N0 sufficiently large, by the
estimate in [20,32], we find that

ga,∗(f)(x)≤
{∑
j∈Z

[∑
k=0

2−kN0r2(k+j)n

ˆ
Rn

[
´ 2

1
|(φ2−(k+j))t ∗ f(y)|2 dtt ]

r
2

(1 + 2j |x− y|)ar
dy

] 2
r
} 1

2

.

This, together with the Minkowski series inequality, Remark 3.2 and Lemma
3.3, implies that

‖ga,∗(f)‖υrWKα,p
q(·)(Rn)

.
∥∥∥∥∑

k

2−k(N0r−n)

(∑
j

2j
2n
r

[ˆ
Rn

[
´ 2

1
|(φ2−(k+j))t ∗ f(y)|2 dtt ]

r
2

(1 + 2j | · −y|)ar
dy

] 2
r
) r

2
∥∥∥∥υ
WK

αr,
p
r

q(·)
r

(Rn)

.
∑
k

2−kυ(N0r−n)

∥∥∥∥(∑
j

2j
2n
r

[ˆ
Rn

[
´ 2

1
|(φ2−(k+j))t ∗ f(y)|2 dtt ]

r
2

(1 + 2j | · −y|)ar
dy

] 2
r
) r

2
∥∥∥∥υ
WK

αr,
p
r

q(·)
r

(Rn)

.
∑
k

2−kυ(N0r−n)

∥∥∥∥{∑
j

2j
2n
r

(∑
i

2−iar ×
ˆ
|·−y|∼2i−j

[ˆ 2

1

|(φ2−(k+j))t ∗ f(y)|2 dt
t

] r
2

dy

) 2
r
} 1

2
∥∥∥∥υr
WKα,p

q(·)(Rn)

,

where | ·−y| ∼ 2i−j means that |x−y| < 2−j if i = 0, or 2i−j−1 ≤ |x−y| < 2i−j

if i ∈ N. Applying Minkowski’s inequality, Remark 3.2 and Proposition 4.3, we
find

‖ga,∗(f)‖υrWKα,p
q(·)(Rn)

.
∞∑
k=0

2−kυ(N0r−n)
∞∑
i=0

2(−iar+in)υ

∥∥∥∥{∑
j

[
M

([ˆ 2

1

|(φ2−(k+j))t ∗ f(y)|2 dt
t

] r
2
)] 2

r
} r

2
∥∥∥∥υ
WK

αr,
p
r

q(·)
r

(Rn)

.
∞∑
k=0

2−kυ(N0r−n)
∞∑
i=0

2(−iar+in)υ

∥∥∥∥{∑
j

[ˆ 2

1

|(φ2−(k+j))t ∗ f(y)|2 dt
t

]} 1
2
∥∥∥∥υr
WKα,p

q(·)(Rn)

. ‖g(f)‖υrWKα,p
q(·)(Rn).

Then

(7.9) ‖g(f)‖WKα,p
q(·)(Rn) ∼ ‖ga,∗(f)‖WKα,p

q(·)(Rn).

Now, let f ∈ S ′(Rn) vanishes weakly at infinity. It is easy see that, for
any a ∈ (0,∞) and x ∈ Rn, S(f)(x) . ga,∗(f)(x) (see [34, p. 1557]), then by
Theorem 7.2 and (7.9), we have

‖f‖WHKα,p
q(·)(Rn) =‖S(f)‖WKα,p

q(·)(Rn) . ‖ga,∗(f)‖WKα,p
q(·)(Rn) . ‖g(f)‖WKα,p

q(·)(Rn).

Conversely, by an argument similar to that used in the proof of (7.8), we
find that

‖g(f)‖WKα,p
q(·)(Rn) . ‖f‖WHKα,p

q(·)(Rn).

This finishes the proof. �
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Theorem 7.4. Let q(·) ∈ C log(Rn) with 1 < q− ≤ q+ < ∞, 0 < p < 1,
α ∈ (0,∞) and λ ∈ (1 + 2

min{2,q−} ,∞). Then f ∈WHKα,p
q(·)(R

n) if and only if

f ∈ S ′(Rn), f vanishes weakly at infinity and g∗λ(f) ∈WKα,p
q(·)(R

n). Moreover,

for all f ∈WHKα,p
q(·)(R

n),

‖g∗λ(f)‖WKα,p
q(·)(Rn) ∼ ‖f‖WHKα,p

q(·)(Rn).

Proof. It is easy to see that, for all f ∈ S ′(Rn) and λ ∈ (1,∞) and x ∈ Rn,
S(f)(x) . g∗λ(f)(x). By this and Theorem 7.2, we have

‖f‖WHKα,p
q(·)(Rn) . ‖g∗λ(f)‖WKα,p

q(·)(Rn).

Conversely, take f ∈ WHKα,p
q(·)(R

n). It follows from Lemma 7.1 that f

vanishes weakly at infinity. By the fact that λ ∈ (1+ 2
min{2,q−} ,∞), we see that

there exists a ∈ ( n
min{2,q−} ,∞) such that, λ ∈ (1+ 2a

n ,∞). By this and the proof

of [32, Theorem 6.3] (see also [20, Theorem 8.3]), we have g∗λ(f)(x) . ga,∗(f)(x).
Then by Theorem 7.3 and (7.9), we obtain

‖g∗λ(f)‖WKα,p
q(·)(Rn) . ‖f‖WHKα,p

q(·)(Rn).

The proof is complete. �
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