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WEAK HERZ-TYPE HARDY SPACES WITH VARIABLE
EXPONENTS AND APPLICATIONS

SouAD BEN SEGHIER

ABSTRACT. Let a € (0,00), p € (0,00) and g(-) : R™ — [1, 00) satisfy the
globally log-Hoélder continuity condition. We introduce the weak Herz-
type Hardy spaces with variable exponents via the radial grand maximal
operator and to give its maximal characterizations, we establish a version
of the boundedness of the Hardy-Littlewood maximal operator M and the
Fefferman-Stein vector-valued inequality on the weak Herz spaces with
variable exponents. We also obtain the atomic and the molecular decom-
positions of the weak Herz-type Hardy spaces with variable exponents.
As an application of the atomic decomposition we provide various equiv-
alent characterizations of our spaces by means of the Lusin area function,
the Littlewood-Paley g-function and the Littlewood-Paley g}-function.

1. Introduction

The theory of function spaces with variable exponents has attracted a great
interest in different fields of analysis and partial differential equations (see
[1,4,8,20,27,31,33]). In 1991’s, Kovécik and Rakosnik [21] studied the vari-
able Lebesgue spaces and later, they have been the subject of more intensive
study, because of their intrinsic interest for applications into harmonic anal-
ysis, partial differential equations and variational integrals with nonstandard
growth conditions (see [5,7,8,18]). Lu, Yang and Hu [23] introduced the Herz
type spaces and gave some applications, then later Tzuki [16,17] introduced the
Herz space with variable exponents and established the boundedness of some
sublinear operators on this space.

On the other hand, the theory of Hardy spaces with variable exponents
have attracted a steadily increasing interest in harmonic analysis in recent
years. In particular, Nakai and Sawano [24] introduced the variable Hardy
spaces HP()(R™) and established their atomic characterizations and their dual
spaces, and also studied the boundedness of singular integral operators on
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HPO)(R™). In [28] Sawano further extended the atomic characterization of
HP()(R™) and improved the corresponding results in [24], and gave out more
applications, including the boundedness of several operators on H p(‘)(]R"). In
[6] the authors also introduced the variable Hardy spaces H?()(R") and estab-
lished their equivalent characterizations by means of radial or non-tangential
maximal functions or atoms, with the variable exponents p(-) satisfying some
conditions slightly weaker than those used in [24]. Moreover, Zhuo et al. [34]
established equivalent characterizations of HP()(R") via intrinsic square func-
tions including intrinsic Lusin area function, the intrinsic Littlewood-Paley
g-function or g}-function. Recently, Jiao et al. in [20] were mainly devoted to
the study of the Hardy-Lorentz spaces with variable exponents H p(')’q(R").

The purpose of this article is to introduce and to investigate the weak Herz-
type Hardy spaces with variable exponents on R”. It is well known that the
classical weak Hardy spaces appear naturally in critical cases of the study on
the boundedness of operators. Indeed the classical weak Hardy space W H!(R™)
was originally introduced by Fefferman and Soria [10] to find out the biggest
space from which Hilbert transform is bounded to the weak Lebesgue space
WLY(R™). They also obtained the oco-atomic characterization of WH!(R")
and the boundedness of some Calderén-Zygmund operators from W H?!(R")
to WLY(R™). It is also well known that HP(R™) is a good substitute of the
Lebesgue space LP(R™) with p € (0,1] in the study of the boundedness of
operators and, moreover, when studying the boundedness of operators in the
critical case, the weak Hardy spaces W HP(R™) naturally appear and prove to
be a good substitute of Hardy spaces HP(R™) with p € (0, 1].

Furthermore, Fefferman et al. [9] proved that the weak Hardy spaces nat-
urally appear as the intermediate spaces in the real interpolation methods
between the Hardy spaces, which is another main motivation to develop a real-
variable theory of W HP(R™). He [14] and Grafakos and He [13] further investi-
gated vector-valued weak Hardy spaces HP'>°(R™, [?) with p € (0, 00). Recently,
Liang et al. [22] introduced weak Musielak-Orlicz-Hardy spaces W H?(R™) and
various equivalent characterizations by means of maximal functions, atoms,
molecules and Littlewood-Paley functions, and the boundedness of Calderén-
Zygmund operators in the critical case were obtained. In [32] the authors
introduced the variable weak Hardy spaces and gave some applications.

In this article, motivated by [22,32] we aim to introduce and investigate the
weak Herz-type Hardy spaces with variable exponents and give some applica-
tions. These spaces are first defined via the radial grand maximal operator
and then characterized by means of radial or non-tangential maximal oper-
ators. Via combining some ideas we borrowed from [3, 22, 32], we construct
the atomic and the molecular decompositions of the weak Herz-type Hardy
spaces with variable exponents. As an applications of the atomic decomposi-
tion, various equivalent characterizations by means of the Lusin area function,
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the Littlewood-Paley g-function and the Littlewood-Paley g3-function, are ob-
tained. To all the above end, we proved a version of the boundedness of the
Hardy-Littlewood maximal operator M and the Fefferman-Stein vector-valued
inequality on the weak Herz spaces with variable exponents.

We end this introduction by describing the layout of this paper.

Section 2 is devoted to recalling some definitions and useful properties for
our work.

In Section 3, we state some basic properties about the weak Herz-type spaces
with variable exponents. We also define the weak Herz-type Hardy space with
variable exponents WHKZ(’?g) (R™) (or WHKZ(I; (R™)) via the radial grand max-
imal function.

Section 4 is devoted to characterize the weak Herz-type Hardy spaces with
variable exponents by means of several maximal operators, particulary, radial
maximal operator, the non-tangential maximal operator, the non-tangential
maximal operator corresponding to Poisson kernels and the discrete maximal
operator. To this end, we first prove the boundedness of sublinear operators on
the weak Herz spaces with variable exponents (see Theorem 4.1), and then we
can deduce the boundedness of the Hardy-Littlewood maximal operator M on
those spaces (see Corollary 4.2), moreover this result may be of independent
interest. By using (Theorem 4.1 and Corollary 4.2) we establish the Fefferman-
Stein vector-valued inequality of the Hardy-Littlewood maximal operator M on
the weak Herz spaces with variable exponents (see Proposition 4.3), moreover
this result will play a role in Section 7 when establishing the Littlewood-Paley
function characterizations.

In Section 5, by borrowing some ideas from [3,22,32], we establish the atomic
characterization of WHKZ‘(’?) (R™). Indeed, we first introduce the weak atomic
Herz-type Hardy spaces WHKZ‘(’?),S’G (R™) and then prove that WHKZ‘(’?‘; (R™)
~ WHK " (R") (see Theorem 5.1). To prove that WHK™" (R") C

q(-),s,at q(+),s,at
WHK:‘(’_’; (R™), we mainly need to prove a key lemma result (see Lemma 5.2).
To prove the converse, we adopt a strategy used in [22,32], originated from [3].
In Section 6, we establish the molecular characterization of WHKS(I; (R™).

We first introduce the weak molecular Herz-type Hardy spaces WHK /2>
q(+),s,mol

(R") and then prove that WHK S (R") ~ WHK;{;Z mot(R™) (see Theo-

rem 6.1). Since each («,p,q(-),00)-atom is also an («,p,q(+), s, €)-molecule,
then to prove Theorem 6.1, it suffices to show that WHK % (R") C

(+),s,mol
WHK:‘(’_}; (R™).

Section 7 is devoted to establishing some square function characterizations
of the weak Herz-type Hardy spaces with variable exponents, including char-
acterizations via Lusin area function, the Littlewood-Paley g-function or the
Littlewood-Paley g3-function, respectively, in Theorems 7.2, 7.3 and 7.4. Our
main tool is the atomic decomposition (Theorem 5.1) and the Fefferman-Stein

vector-valued inequality (Proposition 4.3).
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As usually, throughout the paper, we denote by N and Z the set of non-
negative integers and the set of integers, respectively. The symbol A < B
means A < CB and the symbol A ~ B means A < B and B < A.

2. Preliminaries

In this section, we recall some definitions, properties and some lemmas used
in this work.

A measurable function ¢(-) : R™ — (0, 00) is called a variable exponent. For
any variable exponent ¢(-), define

q— =essinf{g(z) : 2 € R"} and ¢y :=esssup{q(z):z € R"}.

Denote by P(R™) the set of all variable exponents ¢(-) such that 1 < ¢_ <
q+ < 0.
For any measurable function f, define the operator g,y by

041 (f) = /}Rn |f($)\q(w)dx.

The variable Lebesgue space L) (R™) is defined to be the set of all measurable
functions f on R™ such that g,.y(f) < oo. Moreover, for any f € LIO)(R™),
its norm in this space is defined by

11l zas oy 5= inf {A € (0,00) = 0q) (/) < 1}

Similarly, Lfo(g (R™) is the set of measurable functions f on R™ such that f €
LiC)(K) for every compact set K C R™ where

LIO(K) = {fis measurable : 0q(.)(f) = /K |f(2)|9®) dz < oo}.

Recall that the Hardy-Littlewood maximal operator M is defined for any
function f € Li, (R™) by

loc
1
M) = sup o [ 5wy,
Q3o |Q| Q

where the supremum is taken over all cubes @ of R™ containing x.

In what follows, we denote the set of all variable exponents ¢(-) € P(R™),
such that the Hardy-Littlewood maximal operator M is bounded on L4(") (R™),
by B(R").

Remark 2.1. We recall that a variable exponent ¢(-) is said to satisfy the glob-
ally log-Holder continuity condition if

lg(z) — q)] < —C

1
> T L ‘r7y€Rn7 ‘.’I,'—y| <
—log(lz — y|)

57

lq(z) — q(y)| z,y € R", |y| > |z|.

R —
~ log(e +[z])’
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It is worth noting that the set C'°8(R™) of all variable exponents which satisfy
the globally log-Holder continuity condition is an important subset of B(R™).
We refer the reader to [5] and Nekvinda [25] for more details.

Next, we recall the definition of Herz spaces with variable exponent on R™.
For this end, let By, := {z € R" : |z| < 2*}, A}, = Bi\By_1 for k € Z. Denote
by Z. the set of positive integers, xx = x4, for k € Z, xx = x for k € Z
and Xo = XB,-

Definition 1. Let a € (0,00), 0 < p < oo and ¢(-) € P(R™). The non-
homogeneous Herz space with variable exponent Kf;(’_}; (R™) is defined to be the

q(-)

loc

set of all functions f € L{\/(R™) such that ||f||Ka(p) (rn) < 00, where

i P
T (Z2’W?||ka||§q(,)(w))

The homogeneous Herz space with variable exponent K (I; (R™) is defined to be

the set of all functions f € L )(R"\{O}) such that ||f||Ka »(gny < 00, Where

loc

||f||Km p(Rn) = ( Z 2kaprXkH1[7,q(-)(]Rn )

k=—oc0

3
%

In what follows, we collect some useful lemmas for proving our results in the
next sections.

Lemma 2.2 ([16]). Let q(-) € B(R™). Then there exists C > 0 such that for
all balls B in R™ and all measurable subsets S C B,

IxBllLao)@ny ~ \B|) ’
(2.2) X5l Lo my <C<S|>62
el o = C \IB]

where 0 < 01,02 < 1 and for every x € R™ : (w) + (I) =1L

The next result can be easily checked by a simple computation using the
p-convexity of the || - [| Lo¢) gn) nOTM.

Lemma 2.3. For any f € Ka’p J(R™) and s € (0,00),
1P ke @y = IFIE 2.0

q( R'n)

The same equality holds for the norm of the space Kf;(’,’; (R™).

The next lemma gives the boundedness of the Hardy-Littlewood maximal
operator M on KO‘(”; (R™) and K:;(p)(]R”) For the proof, we refer to [16, Theo-
rem 4.1(1)].
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Lemma 2.4. Let q(-) € C'°8(R") with 1 < ¢_ < g4 < 00, 0 < p < o0 and
—nd; < a < nda, where 0 < 1,92 < 1 are constants satisfying (2.1) and (2.2).
Then the Hardy-Littlewood maximal operator M is bounded on KZ(’?; (R™) and
R (R,

The Fefferman-Stein vector-valued inequality of M on Kg‘(’g (R™) and KZ‘(Z; (R™)
is given by the next lemma. It was proved in [17, Remark 4.2].

Lemma 2.5. Let q(-) € C°8(R") with 1 < q_ < q; < o0, 0 < p < o0,
1 <r < o0 and —nd; < a < ndz, where 0 < 1,02 < 1 satisfying (2.1)
and (2.2). Then there exists a positive constant C such that, for all sequences

{f1}32, € KoP R,

H(iM(fm)}" )<CH<§EIT>}"

The same result holds for the space KZ(’p) (R™).

P (o a,p (pn
K iR K¢ (R?)

The similar result of Lemma 2.5 was obtained in the variable Lebesgue space
L1C)(R™) (see [4, Corollary 2.1]).

Lemma 2.6. Let q(-) € C'8(R") with 1 < ¢_ < ¢ < o0 and 1 < r < oo.
Then there exists a positive constant C such that, for all sequences { f; }J‘?‘;l, of
measurable functions,

1
r

H(gyM(fjw)T = CH<§ i)

Remark 2.7. For all ¢(-) € P(R™), 0 < p <1 and « € (0,00), we have
> et
k=0

o0
S IRk Fll o )
k=0

La()(R" La() (Rn)

£l Lot (mny =
Lq(')(Rn)

S (21 e )
k=0
= ||f||Kg<11;(Rn)~

The same holds for the space Kg(lg (R™).
Remark 2.8. Let ¢(+) € C'9(R") with 1 < ¢_ < gy < 00, 0 < p < oo and
a € (0,00). By Lemma 2.5 and the fact that, for all cubes B C R”, § € [1, 00)

1

and r € (0, min{1, ”752 ), XgB < B7 [M(x5)]*, we conclude that

Z XBB; Z XB;

jEN jEN

< ¢

a, n a,p (mn
K5 R™) K¢ R™)
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The dual spaces of the KO‘(*; (R™) and Ko"p J(R™) are given in the next lemma.

The reader is referred to [16,17] for more detalls.

Lemma 2.9. Let o € R, ¢(-) € P(R") and 1 < p < oo. Then KZ‘(’_’;(R”)
ap’

coincides with the dual space of K, 0 (R™), where % + i =1 and for every
reR": (l) + =1.
Moreover,

by ey =su0{| [ sGolataris

The same duality is also true for KO‘(”; (R™).

The next lemma introduces the generalised Holder inequality. It can be
found in [19].

(1)

: —a.p! < .
otz ey < 1}

Lemma 2.10. Let X be a Banach function space and X' denotes its associate
space that means X' is the set of all complex-valued measurable functions f
defined on R™ such that

Il = o {| [ s(@lgteris

Then if f € X and g € X', we have

/n |f(z)g(z)ldz < || fllxlgllx-

Nglx s1} < o0

3. Weak Herz-type Hardy spaces with variable exponents
Definition 2. Let ¢(-) € P(R"), 0 < p < o0 and a € (0,00). The non-

homogeneous weak Herz space with variable exponent WK:‘(’_}; (R™) is defined
to be the set of all measurable functions f such that

1fllwcer ey = sup B”X{xER" 1£(@)>8} | () < 00
Be(o,

The homogeneous weak Herz space with variable exponent WKq( )(]R”) is de-
fined to be the set of all measurable functions f such that

I iz ey = BES(%)pOO)5”X{wER”:\f(x)\>B}||Kj(v?)(Rn) < co.

Next, we give some properties of WK;"(J; (R™).

Lemma 3.1. Let ¢(-) € PR"), 0 < p < o0 and a € (0,00). Then

I| - ||WK“ ? (@) defines a quasi-norm on WK (I; (R™), namely,

(i) ||f||WKa D@ = 0 if and only if f =0 almost everywhere;

(i) Jor all '€ € and f € WESS R, |Aflwices ey = M Fllwice oo
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(iii) for any f, g € WKZ‘(”; (R™),

17 + 90 oy < 27 |1 Fogrcen oy + 90 o |

The same properties holds for WKZ(I; (R™).

Proof. Since (i) is obviously true, we only prove (ii) and (iii).
To prove (ii), without loss of generality, we may assume that A # 0. By the
definition of || - ||WKa(,p)(Rn), we have

M lwicgn g = S0 Blxeernins@i=s s @

|)\| sup - I)‘| HX{xeRn \f(I)|>m}HKj(p) (R™)

|)‘|||f||WK"‘ v

aly (R™)

Then, (ii) holds true.
To prove (iii), for any f, g € WKZ(’?; (R™), we have that
Hf + g||1\)]VK°‘4;(Rn)

= sup ﬁ IXtzerniis@)+o@>6} ke ny
Be(o,

< Sup B [”X{wew 1> 5 ke @) T X oernige> 2 lier @)

< sup BPlXgpern fia)> 20 I op () T SUD BPNIX fzern:lg(z))> 23 1ker e
up Bl e s> g £ SUP A I eerngor> gy

<

21 By e+ I9oncscm |
Then (iii) holds true. This finishes the proof. O

Remark 3.2. Let g(-) € P(R"), 0 < p < oo and o € (0,00). Then by the
Aoki-Rolewicz theorem (see [2,26] and [12, Exercise 1.4.6]), we find that there
exists a positive constant v € (0, 1) such that, for all R € N and {f;} 2

Zlfj\ <4[Z||fJWKM(Rn].
j:

j=1 a(h (B™)
The same holds for WKZ(ZS (R™).

Lemma 3.3. Let ¢(-) € P(R"), 0 < p < 00 and o € (0,00). Then, for all

fe WK;"(’_’; (R™) and s € (0,00), we have

Jj=1

v

WK

P sy ) = 151 o g

The same holds for WKZ(’p) (R™).
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Proof. By Lemma 2.3, we find that

1 wien ey = BES(%POO) BlIX{zern: p(a)o> 8 lxo s )

= sup 7 xqeerniis@)> ko @)

~7€(0,00)
= sup 7[[X{zern: [° o
up Vlxtzeris@ion s e g
- f s a s .
o
The proof is complete. O

Definition 3. Let ¢(-) € P(R"), 0 < p < oo and « € (0, 00).
(1) For each N € N, let

Fr(R") = {90 eS®Y: Y sup [+ ]al)¥|DPp(x)] < 1}.

pezr |8|<N “R”
(2) Let f € S'(R™). Denote by My the grand maximal operator given by
Myf(@)= sup [t7"R(T1)x f(2)].

t>0,YeFn
(3) The non-homogeneous weak Herz-type Hardy space WHK:;(’; (R™) is
defined by
WHKI(R") := {f € S'(R") : ”f”WHK;"(‘_’;(R”) < oo},
where
||f||WHK;*(>_f3(1Rn) = HMNfHWKZ(’_’;(R"y
e homogeneous weak Herz-type Hardy space <P (R s de-
4) The h k H Hard WHK, ! (R") is d
fined by
WHKZ(Z;(RTL) ={feS'R"): ||f||WHI'<§(’_’3(R") < oo},
where

HfHWH}‘(Z‘(Qp)(Rn) = ||MNf||wKZ(*_p)(Rn)-

4. Maximal function characterizations

In this section, we give equivalent characterizations of the weak Herz-type
Hardy spaces with variable exponents in terms of several maximal operators.
To this end, we first prove the boundedness of the Hardy-Littlewood maximal
operator M on the weak Herz spaces with variable exponents and further prove
the Fefferman-Stein vector-valued inequality.

Theorem 4.1. Let q(-) € C'°8(R") with 1 < q_ < gy < 00, 0 <p <1 and
a € (0,00). If T is a sublinear operator and bounded on WILI)(R™), then T

is bounded on WKZ‘(’?’) (R™).
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Proof. To prove the claim, let p; € (1,00). Since T is bounded on W L) (R™),
we have that

o0

k ~

1T f ke gy = 5Up D 25 PIT Ry oo oy
q(-) AE 0,00) =0

< Z 9kap(1—p1) ”Tf”WLq( ) &™)
< Z 2kap(1—p1)||f||zV7VLq(_)(Rn)

o0
5 Z ||f§€] ||€VLq<»>(]Rn)

=0
S Z 2jap||fXJ ||WLq< ) (R™)

< ||f||WK°‘ P (Rm)"

Thus
1T llwiem @y S I llwke s @)
The proof is complete. O

By Theorem 4.1 and the boundedness of M on W L) (R™) with ¢_ > 1 (see
[32, Corollary 3.3]), we deduce the following boundedness of M on WKj(’_’; (R™).
Corollary 4.2. Let g(-) € C°8(R") with 1 < ¢_ < qy < o0, 0 <p < 1 and
a € (0,00). Then the Hardy-Littlewood mazimal operator M is bounded on
WKj(% (R™).

Moreover, using Theorem 4.1, we obtain the following Fefferman-Stein
vector-valued inequality of the Hardy-Littlewood maximal operator M on
WEKE(R™).

q(-)
Proposition 4.3. Let q(-) € C%(R") with 1 < q¢_ < qy < 00, 0 < p < 1,
1 <r<ooand o€ (0,00). Then there exists a positive constant C such that,
for all sequences { f; }‘f:l of measurable functions,

) = M) D
j=1 WKO‘ p(R" j=1 WK®*?T (R™)

a(-)

Proof. Fix an arbitrary sequence of measurable functions { [i}52, and for any
measurable function g, define
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where 7 € (1,00), and

n; = f— (Z fj|r> # 0, and 7; otherwise.

(Zmi)

Then, by the Mikowski inequality, we find that, for any measurable functions
g1 and ga,

Al + 92)(@) = (S + )@ )
< ( St + Mg @)

j=1

i

1 00 1

. (i[M(gﬂ?j)(x)]T) "y (Z[M(gzﬂj)(x)r) Tv

Jj=1 Jj=1
= A(g1)(z) + Alga)(2)-

Thus A is sublinear. Moreover, for a measurable function h and by applying
Lemma 2.6, we have

AP Loy S NPl Lo (mmy-

Let g := (2;01 |fj|’“) . Then, by Theorem 4.1, we deduce that

o0 L
()| ~ 1 A() w5 )
j=1 WKE (R™)
S lgllwics;s ey ~ H(Zm ) H 7
WK (R)
which completes the proof. (I

Definition 4. Let ¢ € S(R™) such that [, ¢(x)dz # 0.
(1) We define the discrete maximal operator with respect to ¢ by

My f(x) := sup |’ * f(z)],
JEZ

where
¢’ () = 27" p(20x).
(2) Suppose that we are given an integer L > 1. We write

) . o7 * f(y)]
M7 f(x) =M T) :=sup su 4
of(2) = M 1 f(z) b e (L+4i[z — y2)L
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Theorem 4.4. Let q(-) € C'°8(R") with 1 < q_ < q4 < oo 0<p< oo and
€ (0,00). For all f € S'(R™), ¢ € S(R™) such that [, ¢(x)dx # 0, we have
I Fllwstscs ey ~ M Fllwices ey ~ MGl -
Proof. We need the following lemma.

Lemma 4.5. For all f € §'(R™) and 0 < 6 < 1, we have
Mf(@) 5 (Mlsuplet  71°)(@)) " = (MIO))) "

We fix 6 € (0, min{1, %}) Then by Lemmas 3.3 and 4.5 and Corollary 4.2,
we have

HM;fHWKj('?;(Rn) < H (M[(M*”f)emé

WKQ P (Rn)

=

< || M)

oo, §
a()
6

S 1Mo fllwks s @)
Then, from this and the definitions of M,, M7 and My, we have

WK (Rn)

MG fllwke s @ny ~ 1Mo fllker @y S 1 lwakes @e)-
Moreover, by [24, p. 3678], we know that for every x € R",
M fz) S Mg f (),
then
||f||WHK” PR S S Mg f||WK R

The proof is complete. 0
Definition 5. Let f € S'(R"), ¢ € S(R™) such that [p, ¥(z)dz # 0 and for
t>0, ¢i(x) == t7"P(3).

(1) The radial maximal operator of f is defined by

My f(x) = sup |f (@) * ()]
(2) The non-tangential maximal operator of f is defined by

Mg o f(x) = sup  [f(z)*¢(y)], a € (0,00).

t>0,|ly—z|<at

(3) The grand maximal operator:
a) the grand radial maximal operator of f is defined by

Mn f(z) = sup Myf(x)
YEFN

b) the grand non-tangential maximal operator of f is defined by

My f(x) = Sup M, | f(z).
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(4) A distribution f € S’(R™) is called a bounded distribution if, Vi €
S(R™), f*1p € L>°(R"™). For a bounded distribution f, its non-tangent-
ial maximal operator with respect to Poisson kernels {P; };~¢ is defined
by setting, Vx € R™,

Nf(z):= sup |f=*P(y)l,
t>0,|ly—z|<t
where ]
F( n+1 ) t
Py(z) == nil (nt1D) *

T (P z?)
Vr € R™ and t > 0.

Remark 4.6. Let f € S'(R™).

(1) From the definitions of My f and M3, f, and [34, Proposition 2.1], we
have, Vx € R™,

My f(x) ~ My f(2).
(2) Vx € R" and ¢ € S(R"),
My f(z) S My f().
(3) Yz € R",a € (0,00) and ¢ € S(R™),
My of (@) S My f ().
Theorem 4.7. Let q(-) € C'°8(R") with 1 < q_ < g4 < 00, 0 < p < 1,
a € (0,00) and a € (0,00). For all f € S'(R") and N € (/= +n+1,00), the
following items are equivalent:
(1) f € WHEK? (R");
(2) there exists Y € S(R™), [pn.1(x)dz#0 such that wa(ac)EWKg‘(’g(R");
(3) there exists € S(R™), [pn1b(2)dr#0 such that My , f(x) EWKZ‘(’?'S (R™);
(4) f is a bounded distribution and N f(x) € WKZ(’?; (R™).
Moreover
M Fliwacss o ~ 1M s gomy ~ 105, Fllwicss ey~ IV Flwacess e
Proof. We prove (3) = (1). Assume that (3) holds true. Since
N e (maux{g7 i} +n+1,00),
62 q—

it follows that there exists T > q% such that N > T +n + 1. From this and
[6, (3.1)], we have, for all z € R",
(4.1) My f(x) S My f(2),

where

-7
Myrf(z)= sup |f*du(z—1y)| (1 4 'y'> .
t>0,yER" t



46 S. BEN SEGHIER

On the other hand, by the proof of [12, Theorem 2.1.4(c)] and [6, (3.2)], we
find that, for L := % and all x € R",

[My, 7 f(2)]F S MM 1 f1)(x)-
Then, by the fact that T > q%, Lemma 3.3 and Corollary 4.2, we deduce that

1
HMw,TfHWK‘*(gP)(Rn) = |(Myrf)"||*
a w

R

L. P
<>L(R")

= ‘

< (1M (M2 1))

ks

KDL (Rn
W R

1
<INMGA DAy~ MG fllwkes g
K%L (R ) q(-)

g

From this and (4.1), we have

| Mo flwicess gy S 1M F lwacess m)-

(1) = (3) It is true by Remark 4.6.
(1) & (2) It is included in Theorem 4.4.
(4) = (1) Suppose that (4) holds true. Then by [29, p. 99] there exists
Y € S(R™), [on ¥(x)dz # 0 such that
My (@) S Nf(z) € K (R")
and thus

”M#)f”WK;(’_’;(R") S HNf”WK‘;(’_’;(]R")-
(1) = (4) To show that Nf € WK?(’_% (R™), we use the fact [29, p. 98] that
the Poisson kernel can be written as

z) = 27 i (a)
k=0

where {1/*}ren € S(R™) have uniformly bounded semi-norms in S(R"). Fix z
and y such that | — y| < t. Then

[f* Pyl < D278 f % 4, (y |<Z2 "My f().

k=0
Taking the supremum over all such y and ¢ we get for all x € R™

<Z2 M f(z).

Since 1* are uniformly bounded, we have same Remark 4.6(2) holds for 1/* and
by using Remark 3.2, we have

IV fllvree gy < Z? MGk 3 Fllwscos ey
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S My fllwge s ny < o0

Then Nf € WK;‘(’?) (R™).
Next, we show that f is a bounded distribution. By Remark 4.6, we have
that, for all ¥ € S(R™), x € R and y € B(x, 1),

[f (@) S My, (y) S M f(y) ~ My f(y).

Thus, for any x € R™, we have
B(z,1) C Qo :={y e R": |+ (2)| S Mn f(y)}-
By [32, (3.11)] and Remark 2.7, we conclude that
mind{| f * ¢ ()|, [f * ()| }
min ] « (@)%, 1 £ (@)} max{9pal S oy 1950l Eo o}
suin(f ()11 00 b1, ey O o

maX{HMNfH%;/KZ(}’)(]Rn): ||MNf||%$K;x(g(Rn)} < 00.

AR ZAN

A

Therefore, f x 1 € L>®(R™) and f is a bounded distribution. This ends the
proof. O

5. Atomic characterizations

In this section, we establish the atomic characterizations of the weak Herz-
type Hardy spaces with variable exponents. We begin with introducing the
notion of («,p, q(-), s)-atom.

Definition 6. Let ¢(-) € P(R"), 0 < p < 00, a € (0,00), s € (1,00] and
d € (max{ ;- —n—1,5 —n—1},00)NZ;. A measurable function a on R" is
called an (a,p, q(+), s)-atom if there exists a ball B such that

(1) supp a C B;

) llallery < 1B Xl oy

(3) Jou a(@)zPdz =0, for all B € Z7 with |B] < d.
Definition 7. Let ¢(-) € P(R"), 0 < p < 00, a € (0,00), s € (1,00]. The
atomic weak Herz-type Hardy space with variable exponent WHKZ‘(’?)’S’G J(R™)
is defined as

i€Z jEN

where {a; ;}icz jen is a sequence of (a,p, q(-), s)-atoms, associated with balls
{Bi.}iez jen, satisfying that there exists a positive constant ¢ € (0, 1], such
that, for all x € R™ and ¢ € Z, ZjeN XeBi;(z) < A with A being a posi-
tive constant independent of = and 7 and, for all € Z and j € N, \;; :=
A21||XBi,j

|Ka(,p)(Rn) with A being a positive constant independent of ¢ and j.
.
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Moreover, define

1/ lwrkce?

a(+),s,at ’

XiiXB, b\ £
(rn) := inf {sup (Z [JXBH} ) ]
€L jEN HXBI-,J- ‘an(z;(Rn) KZ(’;(R”)

where b € (0,1) and the infimum is taken over all decompositions of f as above.

Theorem 5.1. Let g(-) € C'8(R") with 1 < q_ < ¢4 < 00, 0 < p < 1,
a € (0,00), s € (max{q, %flab},oo] and b € (0,p). Then

1/ llwrke

q('),S,at(Rn) ~ ||f||WHKa,p

a(hH (R

To prove Theorem 5.1, we have to prove the following useful technical lemma.

Lemma 5.2. Let g(-) € C'°8(R") with 1 < q_ < q4 < 00, s>max{q,, %flab ,
a € (0,00), p € (0,00) and b € (0,min{l,p}). Then there exists a positive
constant C such that, for all sequences {Q;}jen of cubes, {\;}jen C C and
functions {a;}jen satisfying, for all j € N, suppa; C Q; and |la;||psmn) <
|Q; 5, then

1
b

) + )
=1 Ko R =1

Proof. Let {A;j}jen C C and {a;};jen be a sequence of functions satisfying
for any j € N, suppa; C Q; where @; is a cube of R®. Then, by Lemmas

(B oy s
(102, (R™) with

Koh®™)

2.3 and 2.9, we deduce that there exists a function g € K

9o B gy < 1 sch that
(2y

= 3
(e |-
j=1

Ko &™)

6.1 <(/ i |Ajaj<x>|b|g<x>|dx)é.

Then, by Lemma 2.10, we get

[ 3" as@Plgte)ide

R™ j=1

= 3 |° a;i\x b X X
> [ Jes@la@)a

>l llay]

Jj=1

—ba
)

oo
> Ajajl
j=1

1
b
b
ba, B
.
oy B0

IN

b
Ls ‘gHL(%)/(Qj)
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IN

= b
SRl

j=1

> [ e @[t

1

(%)/)(x)} & gy

IN

M(

IA

_1
m'ﬂ G

ixo,l” H

ba, % bea (B )/

(T Q())/

Thus, by (5.1), Lemmas 2.3 and 2.4, we obtain

) % 00 %
() | 5[ 0e) |
j=1 Kooh &™) =1 Ko R™)

The proof is complete.
Now, we turn to the proof of Theorem 5.1.

Proof. Step 1: In this step we show that WHK? _  (R") C WHK[ " (R").

To prove that f € WHK:;(”; (R™), it suffices to show that

sup ﬁ“X{zeR" [f*(x) |>5}HK“ P (R™) N Hf”WHK“(P) JNG:OF
B€(0,00) 4

To simplify the notation, let f* =: My(f) with N as Theorem 4.7. For any
given 3 € (0,00), we choose ip € Z such that 2% < 8 < 290F! and write

i0—1
Z ZAJ%J“‘ZZAJ%J Ji+ fa
i=—00 jeN i=ig jEN

Moreover, it holds true that
IX(wern:s-@)>pt s ) S IXgoerns g @)> 23 Ik @n)
X ey s3>y Irgn @)
+ HX{;EG(AIO)C f5 (@) >ﬁ}HK§(P) (R™)

=1+ I+ 13,

where A;, = U2, Ujen (2B; ;).
For Il, it is easy to see that

LS Waern o7, 55, v (@) @xan, , @)> 23 K55 @)

+ X pernsio o Xjen N (@i ) <x>x<2B”>L<x>>ﬁ}”Kq<><R">
=11+ 1.
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To estimate I 1, for any b € (0,p), let § € (1,111111{#““51}7 %}) and

max{q+7 ndyp—ab

€(0,1— %) Then by the Hélder inequality, we find that for all z € R",

7,0 1
Z ZA ij(ai )" (@)x2B, ,; (T)
i=—00 jEN
ig—1 o q—ll i0—1 [i %
S( Z 2zaq> { z 92— mq{z/\d CL” XQB”( )} }
i=—00 1=—00 jeN
2i0a io—1 q %
~/}I{ Z 92— zaq|:z)\zjaZJ X?B77( ):| } )
(2aq - 1)q 1=—00 jeN

where ¢ denotes the conjugate exponent of ¢, namely, % + % = 1. From this,
the facts that gb < 1 and f*(z) < M f(x) for all x € R™, we deduce that

P

Ifl S 0 1

~Y 7 a i = P
{mER" 7[2127 2= mq{ZJEN i,5(ai;)* X2Bj, z)}q]q >2i0=2} Ka)p(Rn.>

(204 —1)d’ a()

q||p

io—1 !
Z 9—iag |:Z )\i,j(ai,j)*ngi'j:l

i=—00 jeN

< 9—iog(1—a)p

a,p pn
K H R

i0—1 q|p
< 9—t0d(1-a) Z 2~ iadp |:Z)\I]]\/I a’LJ XQBLJ:|
i=—00 JEN K:;(I;GR")
N io—1 N oy E P
< gmiod(t=ap N " p0=a)iarl o N |ixp, | llker @) M(ai;)Xx28, , :
2 . () K®P (Rn
= =t aly (R™)

Moreover, by the boundedness of M on L" (1 < r < 00), we have

|M(ai,j)x231‘,j a s

< s W oo )

q
H {HXB,,,J HK:(’g(R"‘)M(ai,j)XQBz,J:| .
Li@n)

@

< Ix2s; g

Then, by Lemma 5.2 and Remark 2.8

ig—1 Lp
17, < g-hiti-ar Y gi-wid (wai,j) '
i=—o0 jEN K“”’(R”)
’L() 1
< griodi=ap ™ i1l gup i (ZXB )
@, J
1=—00 i€z JjeN ( )(Rn)
SO Rvees ey
which implies that
(5.2) Bl S I fllwakes | @
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For I 5, from [32, (4.9)], by similar argument we find this key estimate

+d+1

(@i )" () S HXB,-,j\|I_<};<;;(Rn)[M(XBM)($)]n B

€ (2B ;)"

From this, the Holder inequality, Lemma 2.3, Lemma 2.5 and the fact that d as

in Definition 6, we find for any b € (0,1), ¢1 € (max{1,

7 o) 3)
(n+d+1)b? d2(n+d+1)J7 b

and a € (0,1 — ),

P

D
11,2 5 HX i

{zeR™:
(%91 1) 91

Z 27iaq1 [Z )\z’,j (ai,‘j)*X(

i=—00 jEN

< 9—ioqi(l—a)p

io—1
< 9—ioqi(1—a)p Z 9(1-a)igip

i=—00

jJEN

io—1
< 9—ioqi(1—a)p Z 9l(1—a)q1 —1lipyip

1=—00

(s

JjEN
S A7 Rvmesyr

which implies that
(5.4)

JjEN

< B7Psup2”
i€z

Ka 3P (Rn)

at(R™)?

Bl S fllwakey |,

Then, by (5.4) and (5.2), we have

(5.5) 81 < I fllwimcss

For I, by Remark 2.8, we have

Z ZX231 j

i=i9 jEN

S Z Z X2B; ;

=10 "' jEN

< 27 sup 2P
Z iE€EZ

Ip < ”XALOHKOK P(Rw) =

ZZO

S AP e
which implies that

(5.6) Bl S | fllwaker

q(-),s,at

a k1 1
%[Z'ig— 279 {37 oy Xiyi (@i )" X(ZB”)’(z)}ql] 1

q1

{ZUW(XBL_,)]W}

(zon)

1
aq

>2i0-2}

p

K )

n a1 (n+d+1)n
(ntd+1)q1b

Ka p(Rn)

(R™)-

(Rn) .

a,p
Kq(')(

p

R"™)

«@,p
Ko

p
Z XB;.;

I SRIES

(R™)

at(R™)?

(R’IL ) .

2
T CE= =2yl o
K a(a (n+d+l)
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For I3, by the fact that d as in Definition 6, we choose

51

n a
n+d+1"6(n+d+1)
Then by Lemma 2.5 and (5.3), we have

ro € (max{

p
<
I3 Hx{memm)f::zm Tyen 25000 0> D
s p
SBTPY TN (@) ] x A )
i=ig jEN Ko (R™)
o0 P
S BTy 2 Z[HXBi,j||K:;(’_;;(R”)(a’i;j)*]TQX(AiO)C -
i—io jEN Ko (H®™)
> ( ) ( 11+1) malntdtle
. ro(n+d+1 ro(n+d n
s Y 2| { S, 12 | sy 5
— ; K ra(mFdFI) n ®")
=10 JEN ro(n+d+1)q(-)
P
< prep Z Qir2pg—ip sup 2P ZXB
1=10 jeN KaP(R")
S B Wraxcrs qany
that is
(5.7) BIs S fllwakes |, @)
Combining (5.5), (5.6) and (5.7), we obtain
”fHWHKZ(’?)(R”) = 5 S(%’I;O)B”X{mER" |£*(x) \>B}||Kj(") (R™)
S sup B(IL+ I+ I3) S| fllwaker (@)

Be(0,00) a(*),s,at

which implies f € WHKO‘ B (R”)
Step 2: In this step wc show that WHK P (R") ¢ WHK(F | (R"). To
prove the claim, it suffices to show that WHK®* (R") ¢ WHK?’ P (R™),
)_

q(-) q(-),00,at
due to the obvious fact that each (a,p,¢(-),c0)-atom is also an (c, p,q( ), s

atom for any s € (1,00).
We need the following lemma, which was obtained in [3, p. 219] (see also
[32, Lemma 4.6]).

Lemma 5.3. Let ) € S(R™) be such that supp ¢ C B(0,,1) and [ ¢(z)dx = 0.
Then there exists a function ¢ € S(R™) such that q; has compact support away
from the origin and, for all x € R™\ {0,},

| dtwiunT <1
0
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Recall that, for any d € Z,, q(-) € P(R™), a locally integrable function f on
R™ is said to belong the Campanato space Ly 4(.),q(R") if

I ||£1,q<>,d(R ) QCR” ||XQ||L‘1() | Q ) ’

where sz denotes the unique polynomlal P having degree at most d and
satisfies that, for any polynomial R on R™ with order at most d, fQ [f(z) —
P(2)|R(x)dz = 0.

Now, let 1) € S(R™) be such that supp 1) C B(0,,1) , [(z)xPdz = 0 for all
f € Z7% with |3| < d, then by Lemma 5.3 there exists ¢ € S(R”) such that ¢
has compact support away from the origin and, for all z € R\ {0,},

/ L
0

Define a function 1 on R™ by setting, for all z € R™\ {0,},

i@) = [ bt §

and 7(0,,) = 1. Then, by [3, p. 219], we know that 7 is infinitely differentiable,
has compact support and equals to 1 near the origin.

Let zg = (2,...,2) € R® and f € WHK (’;(R") Following [3], for all
r € R™, set

$(x) = p(x — x0), P(x) = p(x + z0),
F(x,t) = f % ¢(x) and G(x,t) = f*n,(z).
Then by [3, p. 220], we have

[~ v dydt
=[] Punit-n it n s,

For all z € R™, let

My f(z) = sup (1F'(y, )| + |Gy, 1))
t€(0,00),|ly—z|<3(|zo|+1)t

By Remark 4.6, we have My f € WK“(’;(R") and

(5.8) 1My fllwke s @ S 1 lwake s @

For all i € Z, set Q; = {x € R" : My f(x) > 2}, My f is lower semi continuous
(implies Q; is open). Since §2; is a proper open subset of R™, by the Whitney
decomposition we know that there exists a sequence {Q; ;};jen of cubes such
that for all i € Z,

(1) UjenQi; = Q; and {Q;,; }; have disjoint interiors;
(ii) forall j € N, \/nlq, ; < d(Qi;, Q) < 4y/nlq, ;, where lg, ; denotes the
length of the cube Qm and d(Q; ;,Q5) = 1nf{|z yl:x € Qw,y € 0%}
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(iii) for any j,k € N, if the boundaries of two cubes @Q; ; and Q; touch,
then l < ;Q“ < 4
Qik

(iv) for a given j € N, there exist at most 12n different cubes @; j that
touch Q; ;.

Now for any € € (0,00), j € N, i € Z and © € R™, let
d(z, Q%) = inf{|z —y| : y € U};

Qi = {(z,t) e RT 1 0 < 2t(|wo| + 1) < d(=,Q5)};

Q@j ={(z,t) € Rf_“ tx € Qi ,(x,t) € Q \ Qi_}rl}

[e'S) ] o

By the same argument used in [3, pp. 221-222] (see also [20, p. 16]), we conclude
that there exist positive constants ¢; and co > 0 such that for all € € (0, c0),
i€Zand jeN,supp b5 ; C c1Qi, 165 ]l @mny < 22, [o 05 j(x)aPdz = 0
for all § € Z7; satisfying |f]| < d and

— X /n
2511217 in S'(R™).

1€Z,jEN

and

Moreover, by similar argument that used in [20, p. 16] (see also [32, p. 2855]), we
find that there exist {b; ;}icz jen C L°(R™) and a sequence {eg tren C (0, 00)
such that €, — 0 as k — oo and for any g € L'(R"),

kli_>m (0%, 9) = (bij, 9),

supp bij C c1Qi 5, ||bijll Lo ®n) < 22", For all B € Z7 satisfying |8 < d,
/ i (@)e’de = (b g 2Pxerq,,) = lim [ b (@)ade = 0.
n ’ k—o0 Rn
Next we show that
: €L __ S g,
(5.9) klggoZZbifj = Zme in S'(R™).
i€Z jEN i€Z jEN
Let ¢ € S(R™). By the estimate in [32, pp. 2855-2856], Remark 2.7 and (5.8),
for k, N € N, we get

D Dl @) + b ]

|i|>N jeN

o0
STNHwHLl(Rn)HIwIIcl q<.)d[$g§21‘|xﬂi||Lq('>(R")]r > 27D
Tt i=N+1

Ko (] Z 9~ir=1)

i=N-+1

< 27Nl ey + lelle, o ,lsup 2
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S 27VMlelnien + lelle, o, 1M fllwies @l 27V

27Nl prmny + 27 N(r 1 ||80|| (->1d||fH§NHKZ(’_p)(R”)’
which tends to 0 as N — oo, where r is chosen such that r > max{q+, 1}.

Above we used (5.8) and the fact that, for any ¢ € S(R"), [|¢||£, 4 , is finite
(see [34, Lemma 2.8]).

Similarly, we have
>S9 + (i )] < oo
[i|<N jeN

Then using the same argument as in [22, p. 651], we get (5.9).
For ¢ € Z and j € N, let B; ; be the ball having the same center as @); ; with
radius 5v/ncilq, ;,

j}

C22i||XBi,]

;5 = and )‘i,j = CQQZ.HXBLJ ”KZ(I;(RW)

Ko® (®m)
Then a; ; is an (a, p, ¢(+), 00)-atom associated to B; ; and
f = ZZ)\i’jai’j in Sl(Rn)
i€Z jEN
Moreover, by Remark 2.8 and (5.8), we find

ST

T

® S sup2 H(

s

jEN

(5

JjEN

a,p n
K¢ (R™)

< sup 2’
i€z

Ko7 (R)
< sup 2'[|xa, ke @)

i€Z a¢)
S 1My fllwke s @)

S I llwake

a( (R

which completes the proof. ([

Remark 5.4. The space WHKq( 95,0t (R™) is defined by the same way as in

Definition 7 via replacing the norm of Kj(’_p) (R™) by the norm of Ka(’p) (R™) and
all the results in this section are also valid on this space.

6. Molecular characterizations

In this section, we establish the molecular characterizations of the weak
Herz-type Hardy spaces with variable exponents. We begin with introducing
the notion of (a, p, ¢(+), s, €)-molecule.
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Definition 8. Let ¢(-) € P(R™), 0 < p < o0, a € (0,00), s € (1,00], d €
(max{ ;= —n—1,5 —n—1},00)NZy, and € € (0,00). A measurable function
m is called an (a, p, ¢(+), s, €)-molecule associated with some ball B C R™ if

(i) for each j € N, |[m|r:w, )y < 277U;(B)|* XB||I_(L{~I;(R")’ where

Uo(B) := B and, for all j € N, U;(B) := (2/B) \ (2! B);
(ii) [ m(z)zPdz =0 for all B € Z1 with |3 < d.

Definition 9. Let ¢(-) € P(R"), 0 < p < o0, a € (0,00), s € (1,00] and
€ € (0,00). The molecular weak Herz-type Hardy space with variable exponent
WHK?*P  (R") is defined as
a(-),s,mol
WHK P (R") = {f ESRY): f="> Nijmij€ S’(R”)},
i€Z jEN

where {m; ;}icz jen is a sequence of (a,p, q(-), s, €)-molecules, associated with
balls {B; ;}icz jen, satisfying that there exists a positive constant ¢ € (0, 1],
such that, for all z € R™ and i € Z, ZjeN XeB;j(z) < A with A being a
positive constant independent of x and ¢ and, for all ¢ € Z and j € N, \; ; :=
A2i||XBM ||Ka(,_p)(Rn) with A being a positive constant independent of ¢ and j.

(=[]
HXBm‘ HKZ‘('?;(R”)

jEN

Moreover, define

b

||fHWHKQ’P=;mol(Rn) ;= inf |:Sllp

a(), ; a, :|
i€EZ Kq('_p)(]R")

where b € (0,1) and the infimum is taken over all decompositions of f as above.

Theorem 6.1. Let q(-) € C'°8(R") with 1 < ¢ < g4 < 00, 0 < p < 1,
a€ (0,00), s € (max{q+7%},oo] and e € (n+d+1,00). Then

Ifllwakgze @~ 1 llwake s @

Proof. Notice that an («,p, q(-),o0)-atom is also an (a,p,¢q(+), s, €)-molecule.
Then by Theorem 5.1, we have
WHKS (R") c WHKS? _ (R") C WHK " (R").

) q(-),00,at q(-),s,mol

Therefore, it suffices to show WHK;"(’.’;’;,mol (R™) C WHK:;(’; (R™).

Let m be any fixed («, p, ¢(+), s, €)-molecule associated with a ball B:=B(zp ).
We now claim that m is an infinite linear combination of («, p, ¢(-), s)-atoms.
To this end, for all & € Z,, let my := mxy, sy with Ux(B) as in Definition
8, and P}, be the linear vector space generated by the set {27xy, (B)}y<d Of
polynomials with d as in Definition 8. It is well known (see, for example, [30])
that, for any given k € Z,, there exists a unique polynomial P, € P} such
that, for all multi-indices 8 with |3| < d,

(6.1) /n 2P my,(x) — Py(z)]dz = 0,
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where Py, is given by the following formula

(6.2) Ppi= Y [ /R nﬁxﬁmk(m)dax Qs.x

ez |B1<d

and Qg is the unique polynomial in P}, satisfying that, for all multi-indices 3
with |8| < d and the Kronecker delta d, g,

/n 27Qpk(x)dx = |Ux(B)|0y,8,

where, when v = 3, 0,3 := 1 and, when v # 3, 6,3 := 0.
It was proved in [30, p. 83] that, for all k € Z,

1
sup  |Po(@)| S et k] 1y
€UNB) U (B))| &

From this and the Hélder inequality, we deduce that, for all k € Z,,

i — Pelles sy < ImkllLs iy + 1Pkl
< Ollmal| s, (By)

(6.3) < C27ke12k B

Ls(Uk(B))

1
s

—1
XB ||K;X(:P) (]R")’
where C is a positive constant independent of m, B and k. For all k € Zy, let

é2_k6”X2k‘B ||KZ(’_1’)(R")

SR VS -
q(-)( )

and
25| x5 llxe s (rny (2 — Pr)

ag ‘= =
C||X2kB||Kj(’P)(Rn)

This, combined with (6.1), (6.3) and the fact that supp(my — Px) C Uk(B),
implies that, for each k € Z, ay, is an (a, p, ¢(+), s)-atom and

(6.4) Z(mk — Pk) = Z,ukak
k=0 k=0

is an infinite linear combination of (¢, p, ¢(-), s)-atoms.
Moreover, for any j € Z4 and | € Z}, let

N/ = / my () da.
: ; Uk (B)

Then, for any [ € Z} with [I| < d, it holds that

o0

Ny = Z/ my(z)xlde = / m(x)ztde = 0.
k=0 Uk'(B) "
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From this and (6.2), we deduce that

ZP’f Z Z‘Uk(B)rlQl,k/ my(z)ztdzs
k=0 Rn

lezry |l|<d k=0

Do D N Uk (B) T Quisixu, . (8) (@) — [Uk(B) ™ Quaxu, () ()]
lez |i|<d k=0

> iibf

1€z |i|<d k=0

By an argument similar to that used in the proof of [15, (4.35)], we deduce
that, for any k € Z, and | € Z7 with |I] < d,

(6.5) 1671l oo (rmy S 2_k5||XB||I_<E~£(Rn) and suppby C 2*1B;

moreover, for any y € Z7 with |y| < d, [5, bf(z)z"dz = 0. For all k € Z, and
leZ} with |I| < d, let

ke [ X2r+15 HK""P (R™)

||XBHK“P(RTL)

and

& [ ”XB”KO‘(’“) (R™)

a/l =2 1 .
||X2k+1B||KZ(ﬁ(R"’)
Then, for any k € Zy and [ € Z} with [I| < d, by (6.5) and the definition of
af, we conclude that af is an (a, p, q(+), 0o0)-atom supported on 2**1B up to a
positive constant multiple. Therefore,

(6.6) SNho= Y > ubaf
k=0

1€27 1| <d k=0

is an infinite linear combination of («, p, ¢(-), c0)-atoms.
Combining (6.4) and (6.6), we find that

ka—ka—Pk +ZPk—Zukak+ Z Zulal
k=0

1€27 |1 <d k=0

This shows that an (o, p, ¢(+), s, €)-molecule can be divided into an infinite linear
combination of (a,p, ¢(+), s)-atoms.
To prove f € WHK“’; (R™), it suffices to show that, for any S € (0, o)

(6.8) BlIX(zern:|f=@)>pIker @) S 1 fllwakere | @n)-

Q() q(),s

To simplify the notation, let f* =: My (f) with N as Theorem 4.7.
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For any given 3 € (0,00), we choose ip € Z such that 2% < 8 < 2+1 and
write

io—1 o
f= Z Z)‘ivjmid + Z ZAi,jmi,j = fi+ fa.
i=—o0 jeN i=ig jEN

Moreover, it holds true that
IX(@ern|f@)1>y k2 @) S IX (aern:|fr@)> 2 k27 @)
+ HX{xeRn;|f;(z)|>§}||K;“(’_’3(1R")
=1+ Is.

We first estimate I;. To this end, we need another estimate for (m; ;)*. From
(6.7), we deduce that, for all i € Z and j € N, there exists a sequences of mul-
tiples of (a,p,q(-), s)-atoms, {aé’j}l€Z+a associated with balls {2”1317]4}162+
such that
1

2_l6|2l+1Bi,j

)~ o
X8, o s @)

||a§,j||Ls(1Rn

and m;; =3 100 al ; almost everywhere in R". Then, for all i € ZN(—o0,ig—
1] and j € N, we have

(mij)* < > (@) =" > (al )" Xvu@ B,y

IE€EZy €24 kEZy
2 0o
9 B D ITIES 35 e
1€Z4 k=0 l€Z4 k=3

where Uy (2!B; ;) is defined as Definition 8 with B replaced by 2'B; ;. Thus, it
follows that

||X{xeRn:|f;(m)\>§}||K;*(’_)(R")
< Xgrern it 55, i i) 00> 23 g )
5 ”X{xeRn:Z:O::loc >jen Zzez+ Sioo X die>4} ”K:(I; (R™)
X ern im0t 5 S, S rs 23 K@
=hLi1+1o.

For I 1, by an argument similar to that used in the proof of (5.2), we deduce
that

(6.10) Bha S I fllwakepe | @

(),s,mol

On the other hand, by an argument similar to that used in the proof of
[32, (5.17)], we deduce that, for any i € Z, j € N, l € Z4, k € [3,00) N 2,
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z € Up(2'B; ;) and y € 2! B, ;.

9—le— k(n+d+1)

(6.11) kS o XU (2B, ;) (%),

”K"‘ 7 (R™)
which, combined with (6.9), Remark 2.8, the fact that d as in Definition 8 and

via choosing p < r < 1 and r; € (#d—&-l’ min{1, 221) implies that

’oar
Zo 1
1
CE L IS 9D 9D DEEACCE I N [
i=—o0 jENIEZ, k=3 JT (&™)
Z() 1
< ga-tw Z 22—16 2o—k(n+d+1)2 Z ZXUk(QzB”) »
I€Zy k=3 i=—00 JEN ac)” (B
) o0 n(k+l) » fo—
Y D) S R R S [
N i3 ar.g
l€Zy k=3 i=—o00 JEN Kooy (B
r i0—1

< BU-Drgup o ' (=)
R J%XB” ) (R”)l;ooQ
S D et
jEN Koo (R™)

that is
(6.12) Bl S Hf”WHK" B mot(R™)”
Combining (6.10) and (6.12), we deduce that
(6.13) Oh S | fllwakgzs | @e)-

We next estimate I. By (6.9), we know that

b5 IXpernsz ) 5, o0 Sies, S0 A > 2y K55 @)

+ HX{IGR"”Z??;‘O ZjeN ZZEZ+ >ohs )‘iyj‘]lwk>§} ”KZ()-I;(RH)
=11+ I25.
FOI' any b S (0,p)7 let (j S (1,min{W, b}) and a € (1 - = OO)
max +

)
oL —ab a

Then by similar argument to that used in the proof of (6.10), we obtain

io—1
< 9—i0d(1-a)p ol(1=a)a—1lip g,y 9P < B, >
2.1 ’L;OO €7 % H Ka P (Rn)

S BN sy
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that is
(6.14) Blan 3 I fllwakere  @ny.

q(+),s,mol

On the other hand, let 1 < ¢ < % and a € (1 — %,oo). By the Holder
inequality, we find that, for all z € R",

EEEEeas (B (B R g

=0 jeNI€Z k=3 jENIEZ k=3

S m e}

(2aq = JENIEZy k=3
By the fact that d as in Definition 8, we choose r € (7777, min{l, %}).
Then by (6.11) and Remark 2.8, we find that
p
‘[52 ~ HX 2'09
’ {zER" 7[210on 2= ”‘Z{Z]gm Zle#+ Zk s/\7 ]Jl Ic} ]q>210 2} Ka P(Rn)
(204’ —1)d’
p
Srotoon] S5 5 S na]
i=ip jENIEZ, k=3 Koh (R™)
oo
—iog(1— i(1— leg—k(n+d
PR DOETTD D SEAERIET) DI
i=1ig I€Zy k=3 JEN qq(-)q (&™)
ioq(1 il 1 k(nt-d+1 "
< 9—togq(l—a)p 222( —a)pg Z ZQ— epg9—k(n+d+1)pq ZXU;@(T'BM) .
i=ig l€Zy k=3 jEN . (R™)
< 1— (1— ! k(ntd+1 n(k+l)
9—ioa( a)pZQZ a)pq Z ZQ epg9—k(n )P4 =——rq ZXB” o
i=io I€Zy k=3 jEN (g B™)
Pq
< 9—iog(1—a) i(1—
<2 0q apZQZ( a)pq ZXBm 7Pq
i=ig jEN K, (RY)
p
< g-ioa(l=a)p Z 2il(1=a)pa=p] g, 2iP ZXB
i3
1=1g i€Z JjeEN KZ(.F;(R7L)
S O Wagces oy
that is
(6.15) Bla2 S| fllwake e (mny-

q(+),s,mol

Combining (6.14) and (6.15), implies that SI> < [|f|wrakere (). This,

q(+),s,mo

together with (6.13), shows that (6.8) holds true and this finishes the proof. O

a,p,€

Remark 6.2. The space WHKq(~),s,mol(Rn) is defined by the same way as in

Definition 9 via replacing the norm of K;"(’_}; (R™) by the norm of Ka(’p) (R™) and

all the results in this section are also valid on this space.
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7. Littlewood-Paley function characterizations

In this section, as an application of the atomic decomposition, we provide
several equivalent characterizations of the weak Herz-type Hardy spaces with
variable exponents via the Lusin area function, the Littlewood-Paley g-function
and the Littlewood-Paley g3-function.

Let d be as in Definition 6 and ¢ € S(R™) be a radial function satisfying

(7.1) suppp C {z € R" : |z| < 1},
(7.2) / ¢(z)zPdr =0 for all B € Z'} with |8] < d
and
® 2 2dtL n
(7.3) lp(et)] 5= 1 for all e € R™\ {0}.
0

For all f € §'(R™), the Littlewood-Paley g-function, the Lusin area function
and the Littlewood-Paley g}-function with A € (0, c0) are defined, respectively,
by setting, for all z € R™,

s =( [ |f*¢t<x>|2‘ff)é,

s =( [ . 5 a2 )é

dydt\
)m 2
</ [ =i omr i)

where for any x € R", I'(z) = {(y,t) € R x (0,00) : |y — x| < t} and, for any

(7 00), ¢u(-) =t ”¢(t b
For all t,a € (0,00) and = € R™, let

and

60+ Sz + )|

(¢tf) ( ) yGR” <1+ |y|)

Then, we define

) = ([ Do[wzf)a(x)]ﬂf)%

Recall that f € S'(R™) is said to vanish weakly at infinity if, for every
¢ €SR™), fx¢d — 0in S'(R™) as ¢ — oo (see [11, p. 50]).

Lemma 7.1. Let q(-) € C'8(R") with 1 < ¢ < qy < o0, 0 < p < 1 and

€ (0,00). If f € WHKq(”; (R™), then f vanishes weakly at infinity.
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Proof. Let [ € WHKZ‘(Z;(R") For ¢ € S(R"), z € R", t € (0,00) and
N € (/= +n+1,00), it follows from [34, p. 1553], Remark 4.6 and Remark 2.7

that
min{|f * ¢¢ ()", [f * pe ()|}

1
5 B(ZL',t) maX{HMNf”Lq() (Rn)? ||MNf||Lq() Rn) }
1
< q- a+
~ B(Z‘,t) maX{HMNf”KCqX(’_P)(Rn)v ||MNf||Ks(’p)(]R")} —0
as t — oo, which implies that f vanishes weakly at infinity. This finishes the
proof. O

Theorem 7.2. Let q(-) € C'°8(R") with1 < q_ < q; <o00,0<p<1landa¢c
(0,00). Then f € WHKa(’p) (R™) if and only if f € S'(R™), f vanishes weakly

at infinity and S(f) € WK?(? (R™). Moreover, for all f € WHKZ‘(’,’; (R™),

1SCF) lwicsss gy ~ 1f lwrcers

a( (R

Proof. For f € S'(R™) such that f vanishes weakly at infinity and S(f) €

WK;&_’; (R™), we need to prove that f € WHKD‘(’; s.at(R") for some s and d as

in Theorem 5.1 and

I lwakes @ ~ [ fllwakes @ S TS wkes @e)-

Denote by Q the set of all dyadic cubes in R™. For any i € Z, let
Q; ={zeR": S(f)(z) > 2"}
and

For all i € Z, we use {Q; ; }, to denote the maximal dyadic cubes in Q;, namely,
there does not exist @ € Q; such that Q; ; & Q. For any Q € Q, let I denote
its side length and

Q" ={(y,t) e R}y € Q,Vnlg < t < 2V/nlg}

and, for all i € Z and j, let

B;j = Ugeo;,Qcq., Q.

Here we point out that QT for different Q € Q; and ) C Q;; are mutually
disjoint. For ¢ € Z, j and x € R",

Aij = 2" ||X4fQ” lxem @)

and

1 dydt
ai(@)=5— > I ouly)oula —y) =,
"I QeQi,QcQi,; T @T
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where ¢ is as in (7.1), (7.2) and (7.3). It follows from [22, Theorem 4.5] and
[20, (8.5)] that

f = Z )\i,jai,j in Sl(Rn)
.7

By [32, Theorem 6.1], we find that for any i € Z and j,
suppa;j C Qs j = 4v/nQuj;

/ aiyj(:v)a:ﬁdx =0, |8] <d;

and
1
s

|Qz,j
'~ Tixa,, ez @)
J

laijllLsmny S

This implies that a; ; is an (o, p,q(-), s)-atom up to a harmless constant mul-

tiple. Moreover, by Remark 2.8, |Q; ; N €| > @ and the fact that {Q; ;};
have disjoint interiors, we find that, for any i € Z,

by L
AiiXa, b i
052 (i) ) g <2150 |
||XQ” |K';(")(R") J K705 (R™)
} g
<2(Sren) |
; Kyt (&)
, b
521 <ZXQi,jﬂQi>
J

S 2'lxadllxes @

S

a,p n
K (&™)

@, p
Ko«

RN
S IS lwkee s @y

Conversely, take f € WHK;)‘(’,’; (R™). Obviously, by Lemma 7.1, we know
that f vanishes weakly at infinity. Due to Theorem 5.1, we can decompose f
as follows

10—1
f= Z Z)\’JCL%J—"_ZZ)‘JCLLJ f1+ fo,
t=—00 jeN i=ig jEN

where {\; ;}icz jen and {a; ; }iez, jen are as in Theorem 5.1. Thus, we obtain
HX{IGR” S)( z)>ﬁ}||Kq( BR™) ~S ||X{16Rn :S(f1)(z)> ﬂ}HKa P (Rm)
+ ||X{zeAio;S(f2)(x)>§}||K;‘(’.‘;(R”)

X e (ai)e:5(2))> 23 Ik ()
= Il + I2 + I37

where A;, 1= U2, Ujen (4B; ;) and { B j}icz jen are the balls as in Theorem
5.1.
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For I, it is easy to see that

LS ”X{wew 0T e M S(ai ) (@)xas, (@ >>ﬁ}”K°‘” (R™)

+ X (zcre: 0T T en Mg S(ai) (@)X, >c<z>>’3}”K“ H(®™)
=Ii1+ 1.
For I; 1, by the boundedness of S on L™ (R™) (1 < r < 00), Lemma 5.2, Remark

2.8 and an argument similar to that used in the proof of (5.2), we conclude
that

(7.4) Bl S 1 flwakes |, @)

On the other hand, by an argument similar to that used in the proof of
[32, (6.15)], we deduce that, for any i € Z,j € N, and = € (4B, ;)¢,

1S(as;)(2)| S (Mxa, , (x)) "

From this, the Holder inequality, Lemma 2.3, Lemma 2.5 and an argument simi-
lar to that used in the proof of (5.4), we deduce that 511 5 < ||fHWHKa ()

Combining this with (7.4), we conclude that

HXBH g ‘K‘l P (Rm)*

(7.5) BhL S fllwakes @)
By an argument similar to that used in the proof of (5.6), we also find that
(7.6) Bl S fllwakes | @)

Finally, for I3, by Lemma 2.3, Lemma 2.5 and an argument similar to that
used in the proof of (5.7), we deduce that

(7.7) Bl S |1 f llwaker

q(-),s,at

Combining (7.5), (7.6) and (7.7), we conclude that

®")-

(7.8) 1S(H) Iwice @y S 1 fllwrices o),

which completes the proof. (I

Theorem 7.3. Let q(-) € C'°3(R™) with1 < q_ < q; <00,0<p<landac
(0,00). Then f € WHKZ(’?) (R™) if and only if f € S'(R™), f vanishes weakly
at infinity and g(f) € WKZ‘(’,’; (R™). Moreover, for all f € WHK:‘(’?; (R™),

Hg(f)HWKQ’_p(R") ~ ||f||WHK"(’_P)(R")~

Proof. Let us prove first that ||g(f )HWK" @ lga,«(f )||WK“ 7 (Bn)-

)~
By definition we easily see that g(f) < < ga,*(f) then
)

lg(f )HWKC”’(R”) S N Ga,x(f HWK‘”’ R™)
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Conversely, by choosing a € (m, 00), it follows that there exists r €
(0,min{2,q_}) such that a € (%,00). Choose Ny sufficiently large, by the
estimate in [20,32], we find that

Gore () () < { > [Z -iorytiin [ | ?f f;]sf * ﬁ)ﬁt]g dy] 7 }

je€Z “ k=0 "

3
=

This, together with the Minkowski series inequality, Remark 3.2 and Lemma
3.3, implies that

19a,(f )”WK“ & ®R™)

5 Z 2—kv(N0r—n)
k

L

- 2
—k(Nor—n) Z2Jf fl (Po—hta) )t * (y)P%]id’y "\
(21 =y

R

j2n U2 (Gomceen)e * F(y) P15 17\ %
<22J' |: (1+2J‘ _y|)zu ¢ dy:| ) »

7 R WK (" (R")

{zj:gyT<zi:2—mr X /‘,,y\wgz—] [/ [(o-rsi)e * f(y)] —] r]y) }

where |- —y| ~ 2¢77 means that |z —y| < 277 ifi =0, or 207971 < |z —y| < 2077
if i € N. Applying Minkowski’s inequality, Remark 3.2 and Proposition 4.3, we
find

WK

v

ur

)
WG )

S Z 9—kv(Nor—n)
k

0.0 () e

0
< Z 92— kv(Nor—n) Z 2( iar+in)v
k=0 i=0

(R™)

v

{ {M({/ﬁ“%—(wﬁ)t*f(y)rz%}%)]%}g

J aC)
-

([ e srd] )

J

or

Z —kv(Nor—n) Z 2( iar+in)v

k= i=0 WK (R™)
S g ( Miwke s @n)-

Then

(7.9) lg(f )HWK"”(]R" l19a (f )HWK"”(R)

Now, let f € S’'(R™) vanishes weakly at infinity. It is easy see that, for
any a € (0,00) and z € R", S(f)(z) < ga«(f)(x) (see [34, p. 1557]), then by
Theorem 7.2 and (7.9), we have
||f||WHKZ(ﬁ(R"):”S(f)HWKZ(’_”)(R") S M Ga,x(f )”WK“ DR S < llg(f )HWK‘”’(]R"

Conversely, by an argument similar to that used in the proof of (7.8), we
find that

Hg(f)HWKs(’_p)(]R") S ||f||VVHK°‘(P)(R ).

This finishes the proof. (I
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Theorem 7.4. Let q(-) € C8(R™) with 1 < ¢_ < qp < 00, 0 < p < 1,
a € (0,00) and A € (1+ W,oo). Then f € WHK;’(’?) (R™) if and only if
f e S (R"), f vanishes weakly at infinity and g3 (f) € WKZ‘(’?) (R™). Moreover,
for all f € WHKZ‘(’?) (R™),

93 (F)lwcz s ey ~ [l werkes

R™)-
Proof. Tt is easy to see that, for all f € S'(R™) and A € (1,00) and = € R,
S(f)(z) < g5(f)(x). By this and Theorem 7.2, we have
||f||WHKq‘1(’_p)(R“) S HQT\(f)HWKj(g
Conversely, take f € WHK?(’;(R") It follows from Lemma 7.1 that f
vanishes weakly at infinity. By the fact that A € (1+ m, 00), we see that

(R™)-

there exists a € (m, 00) such that, A € (1422, 00). By this and the proof
of 32, Theorem 6.3] (see also [20, Theorem 8.3]), we have g3 (f)(z) < ga,«(f)(2).
Then by Theorem 7.3 and (7.9), we obtain

||gj<\(f)||WKZ(’_”)(R”) S ||f||WHKZ(g(R”)~

The proof is complete. (I
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