Acknowledgement
The first author was supported in part by the National Research Foundation of Korea (NRF-2020R1A2C1A01005698) and the second author was supported in part by the National Research Foundation of Korea (NRF-2021R1A4A1032418).
References
- S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 101-111. https://doi.org/10.1007/BF01234317
- H.-D. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in ℝn+1 , Math. Res. Lett. 4 (1997), no. 5, 637-644. https://doi.org/10.4310/MRL.1997.v4.n5. a2
- J. Clutterbuck, O. C. Schnurer, and F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations 29 (2007), no. 3, 281-293. https://doi.org/10.1007/s00526-006-0033-1
- D. Hoffman, T. Ilmanen, F. Martin, and B. White, Graphical translators for mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 117, 29 pp. https://doi.org/10.1007/s00526-019-1560-x
- D. Impera and M. Rimoldi, Rigidity results and topology at infinity of translating solitons of the mean curvature flow, Commun. Contemp. Math. 19 (2017), no. 6, 1750002, 21 pp. https://doi.org/10.1142/S021919971750002X
- D. Impera and M. Rimoldi, Quantitative index bounds for translators via topology, Math. Z. 292 (2019), no. 1-2, 513-527. https://doi.org/10.1007/s00209-019-02276-y
- D. Kim and J. Pyo, Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow, Discrete Contin. Dyn. Syst. 38 (2018), no. 11, 5897-5919. https://doi.org/10.3934/dcds.2018256
- D. Kim and J. Pyo, Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space, Proc. Amer. Math. Soc. Ser. B 8 (2021), 1-10. https://doi.org/10.1090/bproc/67
- K. Kunikawa, Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1331-1344. https://doi.org/10.1007/s00526-015-0826-1
- K. Kunikawa, Translating solitons in arbitrary codimension, Asian J. Math. 21 (2017), no. 5, 855-872. https://doi.org/10.4310/AJM.2017.v21.n5.a4
- K. Kunikawa and S. Saito, Remarks on topology of stable translating solitons, Geom. Dedicata 202 (2019), 1-8. https://doi.org/10.1007/s10711-018-0399-1
- J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of ℝn, Comm. Pure Appl. Math. 26 (1973), 361-379. https://doi.org/10.1002/cpa.3160260305
- R. Miyaoka, L2 harmonic 1-forms on a complete stable minimal hypersurface, in Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.
- L. Ni, Gap theorems for minimal submanifolds in ℝn+1, Comm. Anal. Geom. 9 (2001), no. 3, 641-656. https://doi.org/10.4310/CAG.2001.v9.n3.a2
- B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. https://doi.org/10.1007/BF02566644
- K. Seo, Minimal submanifolds with small total scalar curvature in Euclidean space, Kodai Math. J. 31 (2008), no. 1, 113-119. https://doi.org/10.2996/kmj/1206454555
- Y.-B. Shen and X.-H. Zhu, On stable complete minimal hypersurfaces in Rn+1, Amer. J. Math. 120 (1998), no. 1, 103-116. https://doi.org/10.1353/ajm.1998.0005
- J. Spruck, Remarks on the stability of minimal submanifolds of Rn, Math. Z. 144 (1975), no. 2, 169-174. https://doi.org/10.1007/BF01190946
- Q. Wang, On minimal submanifolds in an Euclidean space, Math. Nachr. 261/262 (2003), 176-180. https://doi.org/10.1002/mana.200310120
- Y. L. Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1995-2016. https://doi.org/10.1007/s00526-015-0853-y