DOI QR코드

DOI QR Code

STABILITY AND TOPOLOGY OF TRANSLATING SOLITONS FOR THE MEAN CURVATURE FLOW WITH THE SMALL Lm NORM OF THE SECOND FUNDAMENTAL FORM

  • Eungmo, Nam (Department of Mathematics Pusan National University) ;
  • Juncheol, Pyo (Department of Mathematics Pusan National University and School of Mathematics Korea Institute for Advanced Study)
  • Received : 2022.01.18
  • Accepted : 2022.07.15
  • Published : 2023.01.31

Abstract

In this paper, we show that a complete translating soliton Σm in ℝn for the mean curvature flow is stable with respect to weighted volume functional if Σ satisfies that the Lm norm of the second fundamental form is smaller than an explicit constant that depends only on the dimension of Σ and the Sobolev constant provided in Michael and Simon [12]. Under the same assumption, we also prove that under this upper bound, there is no non-trivial f-harmonic 1-form of L2f on Σ. With the additional assumption that Σ is contained in an upper half-space with respect to the translating direction then it has only one end.

Keywords

Acknowledgement

The first author was supported in part by the National Research Foundation of Korea (NRF-2020R1A2C1A01005698) and the second author was supported in part by the National Research Foundation of Korea (NRF-2021R1A4A1032418).

References

  1. S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 101-111. https://doi.org/10.1007/BF01234317
  2. H.-D. Cao, Y. Shen, and S. Zhu, The structure of stable minimal hypersurfaces in ℝn+1 , Math. Res. Lett. 4 (1997), no. 5, 637-644. https://doi.org/10.4310/MRL.1997.v4.n5. a2
  3. J. Clutterbuck, O. C. Schnurer, and F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations 29 (2007), no. 3, 281-293. https://doi.org/10.1007/s00526-006-0033-1
  4. D. Hoffman, T. Ilmanen, F. Martin, and B. White, Graphical translators for mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 117, 29 pp. https://doi.org/10.1007/s00526-019-1560-x
  5. D. Impera and M. Rimoldi, Rigidity results and topology at infinity of translating solitons of the mean curvature flow, Commun. Contemp. Math. 19 (2017), no. 6, 1750002, 21 pp. https://doi.org/10.1142/S021919971750002X
  6. D. Impera and M. Rimoldi, Quantitative index bounds for translators via topology, Math. Z. 292 (2019), no. 1-2, 513-527. https://doi.org/10.1007/s00209-019-02276-y
  7. D. Kim and J. Pyo, Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow, Discrete Contin. Dyn. Syst. 38 (2018), no. 11, 5897-5919. https://doi.org/10.3934/dcds.2018256
  8. D. Kim and J. Pyo, Half-space type theorem for translating solitons of the mean curvature flow in Euclidean space, Proc. Amer. Math. Soc. Ser. B 8 (2021), 1-10. https://doi.org/10.1090/bproc/67
  9. K. Kunikawa, Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1331-1344. https://doi.org/10.1007/s00526-015-0826-1
  10. K. Kunikawa, Translating solitons in arbitrary codimension, Asian J. Math. 21 (2017), no. 5, 855-872. https://doi.org/10.4310/AJM.2017.v21.n5.a4
  11. K. Kunikawa and S. Saito, Remarks on topology of stable translating solitons, Geom. Dedicata 202 (2019), 1-8. https://doi.org/10.1007/s10711-018-0399-1
  12. J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of ℝn, Comm. Pure Appl. Math. 26 (1973), 361-379. https://doi.org/10.1002/cpa.3160260305
  13. R. Miyaoka, L2 harmonic 1-forms on a complete stable minimal hypersurface, in Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.
  14. L. Ni, Gap theorems for minimal submanifolds in ℝn+1, Comm. Anal. Geom. 9 (2001), no. 3, 641-656. https://doi.org/10.4310/CAG.2001.v9.n3.a2
  15. B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. https://doi.org/10.1007/BF02566644
  16. K. Seo, Minimal submanifolds with small total scalar curvature in Euclidean space, Kodai Math. J. 31 (2008), no. 1, 113-119. https://doi.org/10.2996/kmj/1206454555
  17. Y.-B. Shen and X.-H. Zhu, On stable complete minimal hypersurfaces in Rn+1, Amer. J. Math. 120 (1998), no. 1, 103-116. https://doi.org/10.1353/ajm.1998.0005
  18. J. Spruck, Remarks on the stability of minimal submanifolds of Rn, Math. Z. 144 (1975), no. 2, 169-174. https://doi.org/10.1007/BF01190946
  19. Q. Wang, On minimal submanifolds in an Euclidean space, Math. Nachr. 261/262 (2003), 176-180. https://doi.org/10.1002/mana.200310120
  20. Y. L. Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1995-2016. https://doi.org/10.1007/s00526-015-0853-y