Acknowledgement
The research of the first author is supported by the National Board of Higher Mathematics(NBHM), Government of India. The second author acknowledges support from National Academy of Sciences, India. The authors are indebted to the referee for a careful reading of the manuscript and for valuable comments and suggestions.
References
- F. Abadie and D. Ferraro, Applications of ternary rings to C*-algebras, Adv. Oper. Theory 2 (2017), no. 3, 293-317. https://doi.org/10.22034/aot.1612-1085
- J. Antony, A. Kumar, and P. Luthra, Operator space tensor products and inductive limits, J. Math. Anal. Appl. 470 (2019), no. 1, 235-250. https://doi.org/10.1016/j.jmaa.2018.09.067
- D. Bohle and W. Werner, A K-theoretic approach to the classification of symmetric spaces, J. Pure Appl. Algebra 219 (2015), no. 10, 4295-4321. https://doi.org/10.1016/j.jpaa.2015.02.003
- E. G. Effros, N. Ozawa, and Z.-J. Ruan, On injectivity and nuclearity for operator spaces, Duke Math. J. 110 (2001), no. 3, 489-521. https://doi.org/10.1215/S0012-7094-01-11032-6
- M. Hamana, Injective envelopes of dynamical systems, in Operator algebras and operator theory (Craiova, 1989), 69-77, Pitman Res. Notes Math. Ser., 271, Longman Sci. Tech., Harlow, 1992.
- T. Ho, A. M. Peralta, and B. Russo, Ternary weakly amenable C*-algebras and JB*-triples, Q. J. Math. 64 (2013), no. 4, 1109-1139. https://doi.org/10.1093/qmath/has032
- A. Kansal, A. Kumar, and V. Rajpal, Inductive limit in the category of TRO, Ann. Funct. Anal. 11 (2020), no. 3, 748-760. https://doi.org/10.1007/s43034-020-00052-2
- M. Kaur and Z.-J. Ruan, Local properties of ternary rings of operators and their linking C*-algebras,C*-algebras, J. Funct. Anal. 195 (2002), no. 2, 262-305. https://doi.org/10.1006/jfan.2002.3951
- E. M. Landesman and B. Russo, The second dual of a C*-ternary ring, Canad. Math. Bull. 26 (1983), no. 2, 241-246. https://doi.org/10.4153/CMB-1983-038-x
- M. A. Naimark, Normed Algebras, Wolters-Noordhoff Publishing, Groningen, 1972.
- R. Pluta and B. Russo, Ternary operator categories, J. Math. Anal. Appl. 505 (2022), no. 2, Paper No. 125590, 37 pp. https://doi.org/10.1016/j.jmaa.2021.125590
- M. Rordam, F. Larsen, and N. Laustsen, An Introduction to K-theory for C* Algebras, Cambridge University Press, 2000.
- H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117-143. https://doi.org/10.1016/0001-8708(83)90083-X