DOI QR코드

DOI QR Code

INDUCTIVE LIMIT IN THE CATEGORY OF C* -TERNARY RINGS

  • Received : 2021.12.30
  • Accepted : 2022.05.25
  • Published : 2023.01.31

Abstract

We show the existence of inductive limit in the category of C*-ternary rings. It is proved that the inductive limit of C*-ternary rings commutes with the functor 𝓐 in the sense that if (Mn, ϕn) is an inductive system of C*-ternary rings, then $\lim_{\rightarrow}$ 𝓐(Mn) = 𝓐$(\lim_{\rightarrow}\;M_{n})$. Some local properties (such as nuclearity, exactness and simplicity) of inductive limit of C*-ternary rings have been investigated. Finally we obtain $\lim_{\rightarrow}\;M_{n}^{**}$ = $(\lim_{\rightarrow}\;M_{n})^{**}$.

Keywords

Acknowledgement

The research of the first author is supported by the National Board of Higher Mathematics(NBHM), Government of India. The second author acknowledges support from National Academy of Sciences, India. The authors are indebted to the referee for a careful reading of the manuscript and for valuable comments and suggestions.

References

  1. F. Abadie and D. Ferraro, Applications of ternary rings to C*-algebras, Adv. Oper. Theory 2 (2017), no. 3, 293-317. https://doi.org/10.22034/aot.1612-1085
  2. J. Antony, A. Kumar, and P. Luthra, Operator space tensor products and inductive limits, J. Math. Anal. Appl. 470 (2019), no. 1, 235-250. https://doi.org/10.1016/j.jmaa.2018.09.067
  3. D. Bohle and W. Werner, A K-theoretic approach to the classification of symmetric spaces, J. Pure Appl. Algebra 219 (2015), no. 10, 4295-4321. https://doi.org/10.1016/j.jpaa.2015.02.003
  4. E. G. Effros, N. Ozawa, and Z.-J. Ruan, On injectivity and nuclearity for operator spaces, Duke Math. J. 110 (2001), no. 3, 489-521. https://doi.org/10.1215/S0012-7094-01-11032-6
  5. M. Hamana, Injective envelopes of dynamical systems, in Operator algebras and operator theory (Craiova, 1989), 69-77, Pitman Res. Notes Math. Ser., 271, Longman Sci. Tech., Harlow, 1992.
  6. T. Ho, A. M. Peralta, and B. Russo, Ternary weakly amenable C*-algebras and JB*-triples, Q. J. Math. 64 (2013), no. 4, 1109-1139. https://doi.org/10.1093/qmath/has032
  7. A. Kansal, A. Kumar, and V. Rajpal, Inductive limit in the category of TRO, Ann. Funct. Anal. 11 (2020), no. 3, 748-760. https://doi.org/10.1007/s43034-020-00052-2
  8. M. Kaur and Z.-J. Ruan, Local properties of ternary rings of operators and their linking C*-algebras,C*-algebras, J. Funct. Anal. 195 (2002), no. 2, 262-305. https://doi.org/10.1006/jfan.2002.3951
  9. E. M. Landesman and B. Russo, The second dual of a C*-ternary ring, Canad. Math. Bull. 26 (1983), no. 2, 241-246. https://doi.org/10.4153/CMB-1983-038-x
  10. M. A. Naimark, Normed Algebras, Wolters-Noordhoff Publishing, Groningen, 1972.
  11. R. Pluta and B. Russo, Ternary operator categories, J. Math. Anal. Appl. 505 (2022), no. 2, Paper No. 125590, 37 pp. https://doi.org/10.1016/j.jmaa.2021.125590
  12. M. Rordam, F. Larsen, and N. Laustsen, An Introduction to K-theory for C* Algebras, Cambridge University Press, 2000.
  13. H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117-143. https://doi.org/10.1016/0001-8708(83)90083-X