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CONTINUOUS DATA ASSIMILATION FOR THE

THREE-DIMENSIONAL LERAY-α MODEL WITH

STOCHASTICALLY NOISY DATA

Bui Kim My and Tran Quoc Tuan

Abstract. In this paper we study a nudging continuous data assimila-
tion algorithm for the three-dimensional Leray-α model, where measure-

ment errors are represented by stochastic noise. First, we show that the

stochastic data assimilation equations are well-posed. Then we provide
explicit conditions on the observation density (resolution) and the relax-

ation (nudging) parameter which guarantee explicit asymptotic bounds,
as the time tends to infinity, on the error between the approximate so-

lution and the actual solution which is corresponding to these measure-

ments, in terms of the variance of the noise in the measurements.

1. Introduction

Data assimilation is a methodology to study and forecast the trend of natu-
ral phenomena, such as the weather, ocean models and environmental sciences.
The idea of data assimilation is to combine observational data with dynamic
principles related to the basic mathematical model. The classical method of
data assimilation is to insert observational data directly into a model as the
latter is being integrated in time, see e.g. [17, 23, 26] and references therein.
However, this algorithm reveals some difficulties when measurements are gath-
ered from a discrete set of nodal points, because it is impossible to accurately
calculate the value of the spatial derivatives present in the model. In the pio-
neering work [7], the authors introduced a new approach for data assimilation
problem, which is a feedback control algorithm [8] applied to data assimilation,
and this method has overcome the disadvantages of the classical method. In
this new algorithm, instead of directly inserting measurements into the model,
a nudging parameter and the observational measurements are used to establish
a new model whose approximation solution converges to the unknown solu-
tion of the original model. Such an approach has been developed later for
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data assimilation of many important equations in fluid mechanics, see, e.g.
[1, 2, 5, 21, 22, 25, 27]. A similar data assimilation algorithm for stochastically
noisy data was introduced in [9], where the problem for the 2D Navier-Stokes
equations was investigated.

The three-dimensional (3D) Leray-α model was first introduced and stud-
ied in [13]. This model is one of a number of regularizations of the Navier-
Stokes equation in which the amplitudes of high wave number components are
suppressed (over and above the suppression already provided by the viscosity
term). In recent years, the existence, regularity, convergence and long-time
behavior of solutions to this model have attracted the attention of many math-
ematicians in both deterministic case [3, 4, 11, 12, 20, 28] and stochastic case
[6, 10, 15, 18, 24]. The continuous data assimilation for the 3D Leray-α model
was studied recently in [21], while the discrete data assimilation for this model
was studied more recently in [5]. It is noticed that in these two works the
observational data do not contain measurement errors.

In this paper we study the continuous data assimilation algorithm with
stochastically noisy data for the following three-dimensional Leray-α model

(1)


∂v

∂t
− ν∆v + (u · ∇)v +∇p = f,

∇ · u = ∇ · v = 0,

v = u− α2∆u,

where u = u(x, t) is the unknown velocity vector field, p(x, t) is the scalar un-
known pressure field, ν > 0 is the kinematic viscosity, and α > 0 is a scale
parameter with dimension of length. We assume periodic boundary condi-
tions with the fundamental domain D = [0, L]3 and take the initial condition
v(x, 0) = v0(x) and the body forcing f = f(x) to be an L-periodic function
with zero spatial average.

In what follows, we will describe the data assimilation problem, which will
be studied in the present paper. Assume that v(t) is a solution lying on the
global attractor of the 3D Leray-α model (1). Denote by Oh(v(t)), for t ≥ 0, the
exact observational measurements without error of the exact solution v at time
t. We assume Oh : V → RD to be a linear operator, where V is the function
space defined in Section 2 below, D is of the order (L/h)3, L is a typical large
length scale of the physical domain of interest, h is the observation density or
resolution, and denote by Rh(v(t)) the interpolation of the observational data,
i.e.,

Rh(v(t)) = Lh ◦ O(v(t)),

where Lh : RD → V is a bounded linear operator. Here we assume the inter-
polant operator Rh satisfies the approximating identity property

(2) ‖w −Rh(w)‖2L2 ≤ c1h2‖∇w‖2L2 for all w ∈ V.
Examples of such interpolant operators Rh are the orthogonal projections onto
the low Fourier modes or finite volume elements (see [2, 7] for details).
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In the absence of measurement errors, the data-assimilation algorithm pro-
posed by Titi et al. [7] would construct the approximating solution z from the
interpolant observables Rh(v(t)) dynamically as the solution to the following
equations

(3)


∂z

∂t
− ν∆z + (w · ∇)z +∇p = f − µ(Rh(z)−Rh(v)),

∇ · z = 0,

with z = w − α2∆w and arbitrary initial condition w(0) = w0. Here µ > 0 is
a relaxation parameter that will be determined later, which forces the coarse
spatial scales of z, i.e., Rh(z), towards those of the observed data, i.e., Rh(v).

Suppose now the exact measurements Oh(v(t)) are subject to some random
errors. Therefore, the only observations available for data assimilation are noisy
observations Õh(v(t)) given by

(4) Õh(v(t)) = Oh(v(t)) + E(t),

where E : [0,∞) → RD represents the measurement error, for example, due
to instrumental errors. This implies that the measurements of v(t) contain
random errors and are given by

(5) R̃h(v(t)) = Lh(Õ(v(t))) = Lh(Oh(v(t))) + Lh(E(t)) = Rh(v(t)) + ξ(t),

where the random vector ξ(t) lies in the range of the interpolant operator Rh.
In this paper we will examine the data-assimilation method given by equa-

tion (3) when the noise-free interpolant observable Rh(v(t)) is replaced by

R̃h(v(t)). In this case, following the general lines of [9], the algorithm for con-

structing z(t) from the observational measurements Õh(v(t)) is given by the
following stochastic evolution equation

(6)

{
dz + [−ν∆z + (w · ∇)z +∇p]dt = fdt− µ[Rh(z)−Rh(v)]dt+ µξdt,

∇ · z = 0,

where z = w − α2∆w and with arbitrary initial condition z(0) = z0. Our
aim here is to find explicit conditions on the relaxation parameter µ and the
observation resolution h which guarantee explicit asymptotic bounds, as the
time tends to infinity, on the error between the approximate solution z and the
actual solution v which is corresponding to these measurements, in terms of
the variance of the noise in the measurements.

The paper is organized as follows. In Section 2, for convenience of the
reader, we recall the functional setting and some results for the deterministic 3D
Leray-α model, and describe the noise term. The data-assimilation algorithm,
including the well-posedness and the convergence results, is presented in Section
3 with observations of volume elements.
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2. Preliminaries

2.1. The functional setting

In this subsection we introduce some notations which will be frequently used
throughout this paper.

Denote by V the space of all divergence-free R3-valued L-periodic trigono-
metric polynomials with zero spatial averages. Let

H = the closuse of V in [L2(D)]3,

V = the closuse of V in [H1(D)]3,

with the inner products given by

(u, v) :=

∫
D

3∑
i=1

uivi dx,

((u, v)) :=

∫
D

3∑
i=1

∇ui · ∇vi dx, respectively

and the associated norms |u|2 := (u, u) and ‖u‖2 := ((u, u)).
For ϕ ∈ L1 we define the average

〈ϕ〉 =
1

L3

∫
D
ϕ(x) dx,

and for every subset Z ⊂ L1, we denote Ż = {ϕ ∈ Z : 〈ϕ〉 = 0}.
Let Π : [L̇2(D)]3 → H be the Leray-Helmholtz orthogonal projector, and

the Stokes operator A subject to the periodic boundary conditions with do-
main D(A) = [Ḣ2(D)]3 ∩ V is defined by Au = −Π∆u = −∆u. The norm in
D(A) is ‖u‖D(A) = |Au|, ∀u ∈ D(A). Moreover, the Stokes operator A is a pos-
itive self-adjoint operator with compact inverse, thus there exists a complete
orthonormal set of eigenfunctions {ψj}∞j=1 ⊂ H such that Aψj = λjψj and

4π2

L2
= λ1 ≤ λ2 ≤ · · · , λj → +∞ as j →∞.

We have the following Poincaré inequalities

(7)
‖u‖2V ′ ≤ λ−1

1 |u|2, ∀u ∈ H,
|u|2 ≤ λ−1

1 ‖u‖2, ∀u ∈ V,

where V ′ denotes the dual space of V (see e.g. [14, 29]).
For all v = u+ α2Au, v ∈ H, we have

|v|2 = |u|2 + 2α2‖u‖2 + α4|Au|2.

Thus, from (7) we get

(8) |u| ≤ |v|, ‖u‖ ≤ 1

21/2α
|v|, |Au| ≤ 1

α2
|v|.
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Let b(·, ·, ·) : V × V × V → R be the continuous trilinear form defined by

b(u, v, w) =

3∑
i,j=1

∫
D
ui
∂vj
∂xi

wjdx, ∀u, v, w ∈ V.

It is well-known that there exists a continuous bilinear operator B(·, ·) : V ×
V → V ′ such that

〈B(u, v), w〉V ′,V = b(u, v, w), ∀w ∈ V.

Lemma 2.1 ([14,29]). We have

〈B(u, v), z〉 = −〈B(u, z), v〉 and 〈B(u, v), v〉 = 0, ∀u, v, w ∈ V.
Furthermore,

|〈B(u, v), z〉| ≤ CL|u|1/4‖u‖3/4‖v‖|z|1/4‖z‖3/4, ∀u, v, w ∈ V,
and

(9) |〈B(u, v), z〉| ≤ CL‖u‖‖v‖1/2|Av|1/2|z|, ∀u ∈ D(A), v ∈ H,w ∈ V.

Applying the Leray-Helmholtz orthogonal projector Π to the Leray-α model
(1) to obtain the functional evolution equation

(10)


dv

dt
+ νAv +B(u, v) = f,

v(0) = v0,

where v = u+ α2Au, f ∈ H, and v0 ∈ H.
Similarly, the stochastic data assimilation equation (6) becomes

(11) dz + [νAz +B(w, z)]dt = [f − µΠRh(z − v)]dt+ µdW,

where z = w + α2Aw and dW (t) = Πξ(t)dt is the noise term.

2.2. The deterministic Leray-α model

Let f ∈ H. We denote the Grashof number in three dimensions by

Gr =
|f |

ν2λ
3/4
1

.

The following result was proved in [13].

Theorem 2.2. Let f ∈ H and v0 ∈ H. Then for any T > 0, problem (10) has
a unique weak solution v that satisfies

v ∈ C([0, T ];H) ∩ L2(0, T ;V ) and
dv

dt
∈ L2(0, T ;V ′).

Additionally, the associated semigroup S(t) : H → H has a global attractor A
in H. And for any v ∈ A, we have

(12) |v|2 ≤M2
0 :=

2ν2Gr2

λ
1/2
1

.
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2.3. The noise term

We now describe the error term E : [0,∞)→ RD that gives rise to the noisy

observations Õh in (4) in terms of a Brownian motion and by using R̃h = Lh◦Õ
to obtain the noise term dW in (11).

Let (Ω,F , (Ft),P) be a probability space on which is defined a sequence of
independent one-dimensional Brownian motions βd(t), d = 1, 2, . . . , D, relative
to the filtration (Ft), which is assumed to be complete and right continuous,
such that

E(βd(t)) = 0 and E(β2
d(t)) =

tσ2

3
for t ≥ 0.

The measurement errors may now be described by

(13) E(t)dt = (dβ1(t), dβ2(t), . . . , dβD(t)).

Note that σ is a dimensional constant whose units of measurement must be
chosen so that the units of measurement for Oh(v(t)) are the same as E .

Writing the linear operator Lh : RD → [Ḣ1(D)]3 as

(14) Lh(ζ)(·) =
D∑
d=1

ζd`d(·), ζ ∈ RD and `d ∈ [Ḣ1(D)]3,

it follows that the noise term in (11) is the Wiener process

(15) W (t) =

D∑
d=1

βd(t)γd, γd = Π`d.

We do not assume γd are orthogonal or even linearly independent.
We can see that W is an [L̇2(D)]3-valued Q-Brownian motion with E(W (t))

= 0. Following [16] (see also [19]), we have

tQ = Cov(W (t)) = E

 D∑
d,p=1

βd(t)γd ⊗ βp(t)γp

 .

Note that Q is a nonnegative and symmetric linear operator with finite trace.
By some computations as in [9], we get that

Tr(Q) =
σ2

3

D∑
d=1

|γd|2 <∞.

We now give an example for interpolant observable based on volume ele-
ments. Suppose the observations of volume elements Oh : [Ḣ1(D)]3 → R3N are
given by

(16) Oh(Φ) = (ϕ̄1, ϕ̄2, . . . , ϕ̄3N ),

where

[
ϕ̄3n−2

ϕ̄3n−1

ϕ̄3n

]
= 1
|Qn|

∫
Qn

Φ(x)dx = N
L3

∫
Qn

Φ(x)dx for n = 1, . . . , N , where

the domain D = [0, L]3 has been divided into N = K3 disjoint equal cubes
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with Qn with edges L
3√
N

and so |Qn| = L3

N . Define Rh = Lh ◦ Oh, where

Lh : R3N → [L̇2(D)]3 with Lh(ζ) is the L-periodic function on D given by

Lh(ζ)(x) =

N∑
n=1

ζ3n−2

ζ3n−1

ζ3n

(χQn
(x)− h3

L3

)
.

Let

(17)

`3n−2(x) =

χQn
(x)− h3/L3

0
0

 , `3n−1(x) =

 0
χΩn(x)− h3/L3

0

 ,
and `3n(x) =

 0
0

χΩn(x)− h3/L3


for n = 1, 2, . . . , N . This implies D = 3N functions are needed in (14). We
have the following proposition.

Proposition 2.3. Let W (t) be the Wiener process in (15), where `d is as

in (17) for d = 1, . . . , 3N. Then W is an [L̇2(D)]3-valued Q-Brownian motion
with covariance operator Q that satisfies

Tr(Q) ≤ σ2L3.

Proof. We have

Tr(Q) =
σ2

3

3N∑
d=1

|γd|2

≤ σ2

3

3N∑
d=1

|`d|2L2

= σ2
N∑
n=1

∫
Ω

∣∣χΩn(x)− h3/L3
∣∣2dx

= σ2
N∑
n=1

∫
Ω

[(
1− 2

h3

L3

)
χΩn(x) +

h6

L6

]
dx

≤ σ2(L3 − h3) ≤ σ2L3. �

3. Continuous data assimilation algorithm

Let v be the weak solution of the 3D Leray-α model (10) given by Theo-
rem 2.2, and let Rh be an interpolation operator satisfying (2). Suppose the
only knowledge we have about v is from the noisy observational measurements
Rh(v(t)) + ξ(t) that have been continuously recorded for times t ∈ [0, T ].

Our first goal is to show that the data-assimilation algorithm given by equa-
tion (11) for computing the approximating solution z is global well-posed. The
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second goal is to prove that z, the solution of the data assimilation equation
(11), approximates the unknown reference solution v of (10), when t → ∞,
within some tolerance depending on the error in the observations.

3.1. Well-posedness

In this subsection we will prove the existence and uniqueness of a global
solution to the stochastic data assimilation equation (11) with arbitrary initial
condition z(0) = z0 ∈ H and z = w + α2Aw, where dW (t) = Πξ(t)dt is the
noise term.

We first give the definition of weak solutions to problem (11).

Definition. A stochastic process (z(t))t∈[0,T ] is called a weak solution on (0, T )
of the stochastic problem (11) if the following conditions holds:

(i) z is progressively measurable;
(ii) z = w + α2Aw belongs to C([0, T ];H) ∩ L2(0, T ;V ) a.s.;
(iii) for all t ∈ [0, T ] and P-a.s.,

(z(t), ϕ) + ν

∫ t

0

(Az(s), ϕ)ds−
∫ t

0

〈B(w(s), z(s)), ϕ〉ds

= (z0, ϕ) +

∫ t

0

(f, ϕ)ds− µ
∫ t

0

(Rh(z(s)− v(s)), ϕ)ds+ µ

∫ t

0

(dW (s), ϕ)

for all test functions ϕ ∈ V .

The following theorem gives the well-posedness of problem (11).

Theorem 3.1. Suppose that the interpolant operator Rh : (Ḣ1(D))3→(L̇2(D))3

satisfies (2) and that 2µc1h
2 ≤ ν with µ ≥ 23/2C2

LM0

να3 . Then for any z0 ∈ H and
T > 0 given, there exists a unique stochastic process solution z ∈ C([0, T ];V )
of problem (11). Moreover,

(18) E
(

sup
0≤t≤T

(|z(t)|2)

)
<∞,

and

(19) E

(∫ T

0

‖z(t)‖2dt

)
<∞.

Proof. The proof is based on a pathwise argument. Consider the auxiliary
process y which is a solution of the following problem

(20)

{
dy + νAydt = µdW,

y(0) = 0.

It is known (see [16]) that

y(t) = µ

∫ t

0

e−νA(t−τ)dW (τ)
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is a stationary ergodic solution to (20) with continuous trajectories taking
values in H. In particular, we have

E(|y(t)|2) ≤ µ2

2ν
Tr(Q).

Indeed, we write

y =

∞∑
j=1

yjej and W =

∞∑
j=1

Wjej =

∞∑
j=1

(
D∑
d=1

γd,jβd

)
ej ,

where yj(t) = 〈y(t), ej〉 and γd,j = 〈γd, ej〉. Then

yj(t) = µ

∫ t

0

e−νλj(t−τ)dWj(τ) = µ

D∑
d=1

γd,j

∫ t

0

e−νλj(t−τ)dβd(τ).

By the independence of βd and the Itô isometry, we get that

E|yj(t)|2 = µ2
D∑
d=1

γ2
d,jE

∣∣∣∣ ∫ t

0

e−νλj(t−τ)dβd(τ)

∣∣∣∣2

=
µ2σ2

3

D∑
d=1

γ2
d,j

∫ t

0

e−2νλj(t−τ)dτ

=
µ2σ2

6νλj

D∑
d=1

γ2
d,j

∫ t

0

e−2νλj(t−τ)d(−2νλj(t− τ))

≤ µ2σ2

6νλj

D∑
d=1

γ2
d,j =

µ2

2νλj

(
σ2

3

D∑
d=1

γ2
d,j

)
.

Therefore, we have

E|y(t)|2 =

∞∑
j=1

λjE|yj |2

≤
∞∑
j=1

λj

(
µ2σ2

6νλj

D∑
d=1

γ2
d,j

)
=
µ2σ2

6ν

D∑
d=1

 ∞∑
j=1

γ2
d,j


≤ µ2

2ν

σ2

3

D∑
d=1

 ∞∑
j=1

γ2
d,j

 =
µ2

2ν
Tr(Q).

Now, using the change of variable z̃ = z − y, we find that z̃ is a solution of
the random differential equation

(21)
d

dt
z̃ + νAz̃ +B(w, z̃ + y) + µΠRh(z̃ + y) = f̃
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with z̃(0) = z̃0 = z0, where f̃ = f + µΠRh(v). Since v ∈ C([0, T ];H) and since
Rh is a bounded linear operator, we have

|ΠRh(v)| ≤ C|v|,

which implies that ΠRh(v) ∈ C([0, T ];H). Therefore, f̃ ∈ C([0, T ];H).
For every ω ∈ Ω, there exists a unique weak solution ũ of equation (21) and it

depends continuously in C([0, T ];H)∩L2(0, T ;V ), for any given T > 0, on the
initial condition z̃(0) = z0 in H. The rigorous proof is based on the Galerkin
approximation procedure and then passing to the limit using the appropriate
compactness lemmas. Because the proof is quite standard, in what follows we
only give the necessary a priori estimates.

Taking the inner product of equation (21) by z̃, we get

1

2

d

dt
|z̃|2 + ν‖z̃‖2 = −〈B(w, z̃ + y), z̃〉 − µ〈ΠRh(z̃ + y), z̃〉+ (f̃ , z̃).

We now estimate each term on the right-hand side. First, by using Lemma 2.1
and (8),

|〈B(w, z̃ + y), z̃〉| = |〈B(w, y), z̃〉|

≤ CL|w|1/2|Aw|1/2|y|‖z̃‖

≤ CL2−1/4α−3/2|y||z|‖z̃‖

≤ ν

4
‖z̃‖2 +

C2
L

21/2να3
|y|2|z|2

≤ ν

4
‖z̃‖2 +

21/2C2
L

να3
|y|2(|z̃|2 + |y|2).

Next, by (2) and the Cauchy inequality, we have

−µ〈ΠRh(z̃ + y), z̃〉 = −µ〈Rh(y), z̃〉 − µ〈Rh(z̃), z̃〉
≤ µ|y −Rh(y)|H |z̃|+ µ|y||z̃|+ µ〈z̃ −Rh(z̃), z̃〉 − µ|z̃|2

≤ µ

2
|z̃|2 + µ(|y|2 + |y −Rh(y)|2)

+
µ

2
|z̃ −Rh(z̃)|2 +

µ

2
|z̃|2 − µ|z̃|2

≤ µ(λ−1
1 + c1h

2)‖y‖2 +
c1h

2µ

2
‖z̃‖2,

and

(f̃ , z̃) ≤ |f̃ ||z̃| ≤ λ−1/2
1 |f̃ |‖z̃‖2 ≤ 1

λ1ν
|f̃ |2 +

ν

4
‖z̃‖2.

Therefore, if we choose h and µ such that ν ≥ 2c1h
2µ, then we get

d

dt
|z̃|2 +

ν

4
‖z̃‖2 ≤ 21/2C2

L

να3
|y|2(|z̃|2 + |y|2) + µ(λ−1

1 + c1h
2)‖y‖2 +

1

λ1ν
|f̃ |2.
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Since f̃ ∈ C([0, T ];H) and y ∈ C([0, T ];V ), by the Gronwall inequality, we
obtain

sup
t∈[0,T ]

|z̃(t)|2 ≤ C.

And thus, we also obtain ∫ T

0

‖z̃(s)‖2ds ≤ C.

Since z = z̃ + y, we have P-a.s., z ∈ C([0, T ];H) ∩ L2(0, T ;V ).
We now prove estimate (18). Using the Itô formula on |z|2, we have

d|z|2 + 2[(νAz +B(w, z)− f, z)]dt
= 2(dW (t), z) + µ2Tr(Q) + 2µ(Rh(z − v), z)dt.

Integrating over (0, T ), we obtain

sup
0≤t≤T

|z(t)|2 + 2ν

∫ T

0

‖z(τ)‖2dτ

= |z0|2 + 2

∫ T

0

(f, z(τ))dτ − 2µ

∫ T

0

(Rh(z(τ)− v(τ)), z)dτ

+ 2µ sup
0≤t≤T

∫ t

0

(dW (τ), z(τ))dτ + µ2Tr(Q)T.

By the Burkhölder-Gundy-Davis inequality (see [19]), we have

2µE
(

sup
0≤t≤T

∫ t

0

(dW (τ), z(τ))dτ

)
≤ 2µ

√
Tr(Q)E

(∫ t

0

|z(τ)|2dτ
) 1

2

≤ 2µE sup
0≤t≤T

|z(t)|
√
TTr(Q)

≤ 1

2
E sup

0≤t≤T
|z(t)|2 + 2µ2TTr(Q).

On the other hand, using (2) and the Poincaré inequality, we get

−2µ(Rh(z − v), z) ≤ 2µ‖z −Rh(z)‖L2 |z| − 2µ|z|2 + 2µ‖Rh(v)‖L2 |z|
≤ 2µc1h

2‖z‖2 − µ|z|2 + 2µ
(
‖v −Rh(v)‖2L2 + |v|2

)
≤ 2µc1h

2‖z‖2 − µ|z|2 + 2µ(c1h
2 + λ−1

1 )‖v‖2,
and by the Cauchy inequality,

2(f, z) ≤ µ|z|2 +
1

µ
|f |2.

Since 2µc1h
2 ≤ ν, combining the previous estimates with the Gronwall inequal-

ity, we obtain

E
(

sup
0≤t≤T

(|z(t)|2)

)
≤ C,
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therefore, we also obtain

E

(∫ T

0

‖z(t)‖2dt

)
< C

as claimed in (19).
This completes the proof. �

3.2. The convergence theorem

Let σ = w − u, δ = z − v with z = w + α2Aw, v = u + α2Au. Then
δ = σ + α2Aσ. Thus, from (10) and (11) we have

(22) dδ + [νAδ +B(σ, δ) +B(σ, v) +B(u, δ)]dt = −µΠRh(δ)dt+ µdW (t),

with δ0 ∈ V is chosen arbitrarily.

Theorem 3.2. Assume that v is a solution of (10) and Rh : (Ḣ1(D))3 →
(L̇2(D))3 is a linear interpolant operator satisfying assumption (2). Assume
that µ is large enough and h is small enough such that

(23)
1

h2
≥ 2c1µ

ν
≥ 23/2c1C

2
LM

2
0

ν2α3
,

where c1, CL are given in (2) and (9), respectively. Then the solution z of the
data assimilation equation (11) given by Theorem 3.1 satisfies

(24) lim sup
t→∞

E
(
|z(t)− v(t)|2

)
≤ µTr(Q),

and

(25) lim sup
t→∞

ν

T

∫ t+T

t

E(‖z(s)− v(s)‖2)ds ≤ µ

T
Tr(Q) + µ2Tr(Q).

Proof. Applying the Itô formula on |δ|2, and from (22) we get

d|δ(t)|2 = 2〈δ(t), dδ(t)〉+ µ2Tr(Q)dt.

This is equivalent to

d|δ|2 + 2ν‖δ‖2(26)

= − 2〈B(σ, v), δ〉dt− 2µ(Rh(δ), δ)dt+ 2µ(dW (t), δ) + µ2Tr(Q)dt.

Using Lemma 2.1, (8), (12) and Young’s inequality, we get

−2b(σ, v, δ) ≤ 2CL‖σ‖1/2|Aσ|1/2|v|‖δ‖(27)

≤ 2CLM0‖σ‖1/2|Aσ|1/2‖δ‖

≤ 2.2−1/4CLα
−3/2M0|δ|‖δ‖

=
(

21/4CLα
−3/2ν−1/2M0|δ|

)(
21/2ν1/2‖δ‖

)
≤ 1

2

(
21/2C2

LM
2
0

α3ν
|δ|2 + 2ν‖δ‖2

)



CONTINUOUS DATA ASSIMILATION FOR 3D LERAY-α MODEL 105

=
C2
LM

2
0

21/2να3
|δ|2 + ν‖δ‖2.

By (2) and the Cauchy inequality, we obtain

−2µ(δ,Rh(δ)) = −2µ|δ|2 + 2µ(δ −Rh(δ), δ)(28)

≤ −2µ|δ|2 + 2µ|δ −Rh(δ)||δ|

≤ −2µ|δ|2 + 2µ

(
|δ −Rh(δ)|2 +

1

4
|δ|2
)

= −2µ|δ|2 + 2µ|δ −Rh(δ)|2 +
µ

2
|δ|2

≤ −3µ

2
|δ|2 + 2µc1h

2‖δ‖2

≤ −3µ

2
|δ|2 + ν‖δ‖2,

where we have used the fact that 2µc1h
2 ≤ ν due to (23).

Therefore, from (26), (27) and (28) we deduce that

d|δ|2 +

(
3µ

2
− C2

LM
2
0

21/2να3

)
|δ|2dt ≤ 2µ(dW (t), δ) + µ2Tr(Q)dt.

Noting that
C2

LM
2
0

21/2να3 − µ
2 ≤ 0 by (23) and integrating from t0 to t, we obtain

|δ(t)|2 + µ

∫ t

t0

|δ(s)|2ds ≤ |δ(t0)|2 + 2µ

∫ t

t0

(δ(s), dW (s)) +

∫ t

t0

µ2Tr(Q)ds.

Taking the expected value, we obtain

E(|δ(t)|2) + µE
∫ t

t0

|δ(s)|2ds ≤ E|δ(t0)|2 + Eµ2

∫ t

t0

Tr(Q)ds,

and using the Gronwall inequality we get

E(|δ(t)|2) ≤ E(|δ(0)|2)e−µ(t−t0) + µ2Tr(Q)

∫ t

t0

e−µ(t−s)ds

= E(|δ(0)|2)e−µ(t−t0) + µTr(Q)

∫ t

t0

e−µ(t−s)d(µ(t− s))

≤ E(|δ(0)|2)e−µ(t−t0) + µTr(Q).

Hence

lim sup
t→∞

E(|δ(t)|2) ≤ µTr(Q),

or

lim sup
t→∞

E(|z(t)− v(t)|2) ≤ µTr(Q).

This proves (24).
In order to obtain the estimate (25), we now estimate

−2〈B(σ, v), δ〉 ≤ 2CL‖σ‖1/2|Aσ|1/2|v|‖δ‖
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≤ CLM0‖σ‖1/2|Aσ|1/2‖δ‖

≤ 2.2−1/4CLα
−3/2M0|δ|‖δ‖

=
(

23/4CLα
−3/2ν−1/2M0|δ|

)
(ν1/2‖δ‖)

≤ 1

2

[
23/2C2

LM
2
0

α3ν
|δ|2 + ν‖δ‖2

]
=

21/2C2
LM

2
0

να3
|δ|2 +

ν

2
‖δ‖2,

and

−2µ(δ,Rh(δ)) = −2µ|δ|2 + 2µ(δ −Rh(δ), δ)

≤ −2µ|δ|2 + 2µ|δ −Rh(δ)||δ|
≤ −2µ|δ|2 + µ

(
|δ −Rh(δ)|2 + |δ|2

)
= −µ|δ|2 + µ|δ −Rh(δ)|2

≤ −µ|δ|2 + µc1h
2‖δ‖2

≤ −µ|δ|2 +
ν

2
‖δ‖2.

Thus, from (26) and by two estimates above, we get

d|δ|2 + ν‖δ‖2dt(29)

≤
(

21/2C2
LM

2
0

να3
− µ

)
|δ|2dt+ 2µ(dW (t), δ) + µ2Tr(Q)dt

≤ 2µ(dW (t), δ) + µ2Tr(Q)dt.

By taking expected values and integrating from t to t+ T (29), we have

E(|δ(t+ T )|2) + ν

∫ t+T

t

E(‖δ(s)‖2)ds ≤ E(|δ(t)|2) + µ2TTr(Q).

Therefore,

lim sup
t→∞

ν

∫ t+T

t

E(‖δ(s)‖2)ds ≤ µTr(Q) + µ2TTr(Q),

and this is equivalent to

lim sup
t→∞

ν

∫ t+T

t

E(‖z(s)− v(s)‖2)ds ≤ µTr(Q) + µ2TTr(Q).

This completes the proof. �

Corollary 3.3. Suppose that the observational measurements are given by fi-
nite volume elements in (16) plus a noise term as in (13), where each βd is
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an independent one-dimensional Brownian motion with variance σ2/3. Inter-
polate these noisy observations using (14) where `d are given by (17). Let

µ =
21/2C2

LM
2
0

να3 , and choose N = K3 large enough such that

h =
L

K
≤
√

ν

2c1µ
.

Then the solution z to the data assimilation equation (11) satisfies

lim sup
t→∞

E
(
|z(t)− v(t)|2

)
≤ k1νGr

2σ2L4

α3
,

and

lim sup
t→∞

ν

T

∫ t+T

t

E(‖z(s)− v(s)‖2)ds ≤
(
k1νGr

2

α3T
+
k2

1ν
2Gr4L

α6

)
σ2L4,

where k1 =
21/2C2

L

π .

Proof. By Proposition 2.3 and the above choice of µ and h, we have

µTr(Q) ≤ µσ2L3 =
21/2C2

LM
2
0

να3
σ2L3 =

23/2C2
LνGr

2

α3λ
1/2
1

σ2L3 =
k1νGr

2σ2L4

α3
,

and similarly, we also get that(µ
T

+ µ2
)

Tr(Q) ≤
(µ
T

+ µ2
)
σ2L3

=

(
21/2C2

LM
2
0

να3T
+

2C4
LM

4
0

ν2α6

)
σ2L3

=

21/2C2
L

2ν2Gr2

λ
1/2
1

να3T
+

2C4
L

22ν4Gr4

λ1

ν2α6

σ2L3

=

(
21/2C2

LνGr
2L

α3πT
+

2C4
Lν

2Gr4L2

α6π2

)
σ2L3

=

(
k1νGr

2

α3T
+
k2

1ν
2Gr4L

α6

)
σ2L4,

where we have used the fact that λ1 = 4π2/L2 and k1 =
21/2C2

L

π . �

Remark 3.4. It is observed that the upper bound on the error given by Corollary
3.3 is independent of h. In particular, if we increase the observation density,
there is no improvement in the quality of the approximation. This is not
surprising since increasing the resolution of the observations did not lead to
any decrease in the size of the measurement errors present in the interpolant
observables R̃h given by (5). We remedy this defect in the following corollary.
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Corollary 3.5. Suppose that the observational measurements are given by fi-
nite volume elements in (16) plus a noise term as in (13), where each βd is an
independent one-dimensional Brownian motion with variance σ2/3. Let µ be
as in Corollary 3.3 and ε ∈ (0, 1). Then, there exists an interpolant observable
based on volume elements with observation density h such that

c′Gr3

L3
≤ ε

h3
≤ max{ε, 64c′Gr3}

L3
,

where c′ =
(

25/2c1C
2
LL

3

2π1/2α3

)3/2

, and

(30) lim sup
t→∞

E(|z(t)− v(t)|2) ≤ µσ2L3ε.

Proof. If
√
ν/(2c1µ) ≥ L, then we may take h = L in Theorem 3.2. In this

case v is a steady state and consequently no observational data is needed to
accurately recover v. Otherwise, let M = K3

1 , where K1 ≥ 3 is the unique
integer such that

h′ =
L

K1
≤
√

ν

2c1µ
<

L

K1 − 1
.

Let Q′m be cubes with edges h′, where m = 1, . . . ,M. Choose h = h′/q, where
q is the integer satisfying

(31) q3 ≥ 1

ε
> (q − 1)3.

With these choices of K1 and q, we have√
2c1µ

ν
≤ 1

h′
=
K1

L
≤ 2(K1 − 1)

L
< 2

√
2c1µ

ν
,

and

ε−1/3 ≤ q = (q − 1) + 1 ≤ ε−1/3 + 1 ≤ 2ε−1/3,

or
ε1/3

2
≤ 1

q
≤ ε1/3.

Thus, √
ν

32c1µ
ε1/3 ≤ h =

h′

q
≤
√

ν

2c1µ
ε1/3,

which is equivalent to(
2c1µ

ν

)3/2

≤ ε

h3
≤
(

32c1µ

ν

)3/2

.

By µ =
21/2C2

LM
2
0

να3 =
23/2C2

LνGr
2

λ
1/2
1 α3

, we arrive at(
25/2c1C

2
LνGr

2

νλ
1/2
1 α3

)3/2

≤ ε

h3
≤

(
16.25/2c1C

2
LνGr

2

νλ
1/2
1 α3

)3/2

.
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Therefore, we obtain

c′Gr3

L3
≤ ε

h3
≤ 64c′Gr3

L3
,

where c′ =
(

25/2c1C
2
LL

3

2π1/2α3

)3/2

.

Let Qm be the cubes with edge h, where m = 1, . . . , N and N = L3/h3 =
q3M. Define the averaging operator A : R3N → R3M byA(ϕ)3m−2

A(ϕ)3m−1

A(ϕ)3m

 =
1

q3

∑
Qn⊆Q′m

ϕ3n−2

ϕ3n−1

ϕ3n

 for m = 1, 2, . . . ,M.

We note that O′h = A◦Oh, where Oh are the noise-free observations of volume
elements given in (16), for the Qn and Oh′ are analogous observations for Q′m.

Let Õh(v(t)) be the noisy observations defined by (4), where E(t) is given

by (13). It follows that A ◦ Õh(v(t)) = Oh′(v(t)) + F(t), where

F(t)dt = (dβ1(t), dβ2(t), . . . , dβ3M (t))

and βj ’s are one-dimensional independent Brownian motions such that

E(βj(t)) = 0 and E(β2
j (t)) = t

σ2

3q3
, j = 1, 2, . . . , 3M.

Therefore, by taking averages of volume elements we have reduced the variance
in the noise term of the measurements. In particular, from (31), the noise term

is equivalent to an [L̇2]3-valued Q′-Brownian motion with

Tr(Q′) ≤ σ2L3/q3 ≤ σ2L3ε.

We now define the interpolant observable

Rh′ = Lh′ ◦ A ◦ Oh.

Since Rh′ satisfies (2) with the same constants as before, applying Theorem
3.2 we get (30) as desired. �
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