References
- R. Ayoub, S. Chowla, and H. Walum, On sums involving quadratic characters, J. London Math. Soc. 42 (1967), 152-154. https://doi.org/10.1112/jlms/s1-42.1.152
- R. C. Baker and H. L. Montgomery, Oscillations of quadratic L-functions, in Analytic number theory (Allerton Park, IL, 1989), 23-40, Progr. Math., 85, Birkhauser Boston, Boston, MA, 1990.
- P. T. Bateman, G. B. Purdy, and S. S. Wagstaff, Jr., Some numerical results on Fekete polynomials, Math. Comput. 29 (1975), 7-23. https://doi.org/10.1090/S0025-5718-1975-0480293-9
- S. Chowla, Note on Dirichlet's L-functions, Acta Arith. 1 (1935), 113-114. https://doi.org/10.4064/aa-1-1-113-114
- S. Chowla and M. J. DeLeon, A note on the Hecke hypothesis and the determination of imaginary quadratic fields with class-number 1, J. Number Theory 6 (1974), 261-263. https://doi.org/10.1016/0022-314X(74)90019-5
- S. Chowla, M. J. DeLeon, and P. Hartung, On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s, χ) for s > 0 and real odd characters, J. Reine Angew. Math. 262(263) (1973), 415-419. https://doi.org/10.1515/crll.1973.262-263.415
- S. Chowla and P. Erdos, A theorem on the distribution of the values of L-functions, J. Indian Math. Soc. (N.S.) 15 (1951), 11-18.
- S. Chowla and P. Hartung, A note on the hypothesis that L(s, χ) > 0 for all real non-principal characters χ and for all s > 0, J. Number Theory 6 (1974), 271-275. https://doi.org/10.1016/0022-314X(74)90021-3
- S. Chowla, I. Kessler, and M. Livingston, On character sums and the non-vanishing for s > 0 of Dirichlet L-series belonging to real odd characters χ, Acta Arith. 33 (1977), no. 1, 81-87. https://doi.org/10.4064/aa-33-1-81-87
- K. S. Chua, Real zeros of Dedekind zeta functions of real quadratic fields, Math. Comp. 74 (2005), no. 251, 1457-1470. https://doi.org/10.1090/S0025-5718-04-01701-6
- J. B. Conrey and K. Soundararajan, Real zeros of quadratic Dirichlet L-functions, Invent. Math. 150 (2002), no. 1, 1-44. https://doi.org/10.1007/s00222-002-0227-x
- H. Davenport, Multiplicative Number Theory, third edition, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000.
- N. J. Fine, On a question of Ayoub, Chowla and Walum concerning character sums, Illinois J. Math. 14 (1970), 88-90. http://projecteuclid.org/euclid.ijm/1256053304 https://doi.org/10.1215/ijm/1256053304
- H. Heilbronn, On real characters, Acta Arith. 2 (1937), 212-213. https://doi.org/10.4064/aa-2-2-212-213
- O. Klurman, Y. Lamzouri, and M. Munsch, On the real zeros of Fekete polynomials, Preprint, 2021.
- S. Louboutin, Determination des corps quartiques cycliques totalement imaginaires a groupe des classes d'ideaux d'exposant ≤ 2, Manuscripta Math. 77 (1992), no. 4, 385-404. https://doi.org/10.1007/BF02567063
- S. Louboutin, Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s, χ) for s > 0 and real characters χ, Colloq. Math. 96 (2003), no. 2, 207-212. https://doi.org/10.4064/cm96-2-5
- S. Louboutin, Remarks on S. Chowla's hypothesis implying that L(s, χ) > 0 for s > 0 and for real characters χ, The Fields Institute Communications Series; Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute Communications 41 (2004), 283-291.
- S. Louboutin, On the size of L(1, χ) and S. Chowla's hypothesis implying that L(1, χ) > 0 for s > 0 and for real characters χ, Colloq. Math. 130 (2013), no. 1, 79-90. https://doi.org/10.4064/cm130-1-8
- M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith 14 (1967/1968), 117-140. https://doi.org/10.4064/aa-14-2-117-140
- D. J. Platt, Numerical computations concerning the GRH, Math. Comp. 85 (2016), no. 302, 3009-3027. https://doi.org/10.1090/mcom/3077
- J. B. Rosser, Real roots of Dirichlet L-series, Bull. Amer. Math. Soc. 55 (1949), 906-913. https://doi.org/10.1090/S0002-9904-1949-09306-0
- J. B. Rosser, Real roots of real Dirichlet L-series, J. Research Nat. Bur. Standards 45 (1950), 505-514. https://doi.org/10.6028/jres.045.058
- E. Teske and H. C. Williams, A problem concerning a character sum, Experiment. Math. 8 (1999), no. 1, 63-72. http://projecteuclid.org/euclid.em/1047477113 1047477113
- L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-1934-7
- M. Watkins, Real zeros of real odd Dirichlet L-functions, Math. Comp. 73 (2004), no. 245, 415-423. https://doi.org/10.1090/S0025-5718-03-01537-0