DOI QR코드

DOI QR Code

ON CHOWLA'S HYPOTHESIS IMPLYING THAT L(s, χ) > 0 FOR s > 0 FOR REAL CHARACTERS χ

  • Stephane R., Louboutin (Aix Marseille Universite, CNRS)
  • Received : 2021.06.16
  • Accepted : 2022.10.28
  • Published : 2023.01.31

Abstract

Let L(s, χ) be the Dirichlet L-series associated with an f-periodic complex function χ. Let P(X) ∈ ℂ[X]. We give an expression for ∑fn=1 χ(n)P(n) as a linear combination of the L(-n, χ)'s for 0 ≤ n < deg P(X). We deduce some consequences pertaining to the Chowla hypothesis implying that L(s, χ) > 0 for s > 0 for real Dirichlet characters χ. To date no extended numerical computation on this hypothesis is available. In fact by a result of R. C. Baker and H. L. Montgomery we know that it does not hold for almost all fundamental discriminants. Our present numerical computation shows that surprisingly it holds true for at least 65% of the real, even and primitive Dirichlet characters of conductors less than 106. We also show that a generalized Chowla hypothesis holds true for at least 72% of the real, even and primitive Dirichlet characters of conductors less than 106. Since checking this generalized Chowla's hypothesis is easy to program and relies only on exact computation with rational integers, we do think that it should be part of any numerical computation verifying that L(s, χ) > 0 for s > 0 for real Dirichlet characters χ. To date, this verification for real, even and primitive Dirichlet characters has been done only for conductors less than 2·105.

Keywords

References

  1. R. Ayoub, S. Chowla, and H. Walum, On sums involving quadratic characters, J. London Math. Soc. 42 (1967), 152-154. https://doi.org/10.1112/jlms/s1-42.1.152 
  2. R. C. Baker and H. L. Montgomery, Oscillations of quadratic L-functions, in Analytic number theory (Allerton Park, IL, 1989), 23-40, Progr. Math., 85, Birkhauser Boston, Boston, MA, 1990. 
  3. P. T. Bateman, G. B. Purdy, and S. S. Wagstaff, Jr., Some numerical results on Fekete polynomials, Math. Comput. 29 (1975), 7-23.  https://doi.org/10.1090/S0025-5718-1975-0480293-9
  4. S. Chowla, Note on Dirichlet's L-functions, Acta Arith. 1 (1935), 113-114.  https://doi.org/10.4064/aa-1-1-113-114
  5. S. Chowla and M. J. DeLeon, A note on the Hecke hypothesis and the determination of imaginary quadratic fields with class-number 1, J. Number Theory 6 (1974), 261-263. https://doi.org/10.1016/0022-314X(74)90019-5 
  6. S. Chowla, M. J. DeLeon, and P. Hartung, On a hypothesis implying the non-vanishing of Dirichlet's L-series L(s, χ) for s > 0 and real odd characters, J. Reine Angew. Math. 262(263) (1973), 415-419.  https://doi.org/10.1515/crll.1973.262-263.415
  7. S. Chowla and P. Erdos, A theorem on the distribution of the values of L-functions, J. Indian Math. Soc. (N.S.) 15 (1951), 11-18. 
  8. S. Chowla and P. Hartung, A note on the hypothesis that L(s, χ) > 0 for all real non-principal characters χ and for all s > 0, J. Number Theory 6 (1974), 271-275. https://doi.org/10.1016/0022-314X(74)90021-3 
  9. S. Chowla, I. Kessler, and M. Livingston, On character sums and the non-vanishing for s > 0 of Dirichlet L-series belonging to real odd characters χ, Acta Arith. 33 (1977), no. 1, 81-87. https://doi.org/10.4064/aa-33-1-81-87 
  10. K. S. Chua, Real zeros of Dedekind zeta functions of real quadratic fields, Math. Comp. 74 (2005), no. 251, 1457-1470. https://doi.org/10.1090/S0025-5718-04-01701-6 
  11. J. B. Conrey and K. Soundararajan, Real zeros of quadratic Dirichlet L-functions, Invent. Math. 150 (2002), no. 1, 1-44. https://doi.org/10.1007/s00222-002-0227-x 
  12. H. Davenport, Multiplicative Number Theory, third edition, Graduate Texts in Mathematics, 74, Springer-Verlag, New York, 2000. 
  13. N. J. Fine, On a question of Ayoub, Chowla and Walum concerning character sums, Illinois J. Math. 14 (1970), 88-90. http://projecteuclid.org/euclid.ijm/1256053304  https://doi.org/10.1215/ijm/1256053304
  14. H. Heilbronn, On real characters, Acta Arith. 2 (1937), 212-213.  https://doi.org/10.4064/aa-2-2-212-213
  15. O. Klurman, Y. Lamzouri, and M. Munsch, On the real zeros of Fekete polynomials, Preprint, 2021. 
  16. S. Louboutin, Determination des corps quartiques cycliques totalement imaginaires a groupe des classes d'ideaux d'exposant ≤ 2, Manuscripta Math. 77 (1992), no. 4, 385-404. https://doi.org/10.1007/BF02567063 
  17. S. Louboutin, Note on a hypothesis implying the non-vanishing of Dirichlet L-series L(s, χ) for s > 0 and real characters χ, Colloq. Math. 96 (2003), no. 2, 207-212. https://doi.org/10.4064/cm96-2-5 
  18. S. Louboutin, Remarks on S. Chowla's hypothesis implying that L(s, χ) > 0 for s > 0 and for real characters χ, The Fields Institute Communications Series; Primes and Misdemeanours: Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams, Fields Institute Communications 41 (2004), 283-291. 
  19. S. Louboutin, On the size of L(1, χ) and S. Chowla's hypothesis implying that L(1, χ) > 0 for s > 0 and for real characters χ, Colloq. Math. 130 (2013), no. 1, 79-90. https://doi.org/10.4064/cm130-1-8 
  20. M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith 14 (1967/1968), 117-140. https://doi.org/10.4064/aa-14-2-117-140 
  21. D. J. Platt, Numerical computations concerning the GRH, Math. Comp. 85 (2016), no. 302, 3009-3027. https://doi.org/10.1090/mcom/3077 
  22. J. B. Rosser, Real roots of Dirichlet L-series, Bull. Amer. Math. Soc. 55 (1949), 906-913. https://doi.org/10.1090/S0002-9904-1949-09306-0 
  23. J. B. Rosser, Real roots of real Dirichlet L-series, J. Research Nat. Bur. Standards 45 (1950), 505-514.  https://doi.org/10.6028/jres.045.058
  24. E. Teske and H. C. Williams, A problem concerning a character sum, Experiment. Math. 8 (1999), no. 1, 63-72. http://projecteuclid.org/euclid.em/1047477113  1047477113
  25. L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-1934-7 
  26. M. Watkins, Real zeros of real odd Dirichlet L-functions, Math. Comp. 73 (2004), no. 245, 415-423. https://doi.org/10.1090/S0025-5718-03-01537-0