DOI QR코드

DOI QR Code

Adsorption of Three Chlorinated Herbicides on Two Activated Carbons: An Example of the Effect of Surface Charge, Pore Diameter and Molecular Size on the Adsorption Process

  • Pila, Matias N. (CEDECOR (Centro de Estudio de Compuestos Organicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)) ;
  • Colasurdo, Diego D. (CEDECOR (Centro de Estudio de Compuestos Organicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)) ;
  • Simonetti, Sandra I. (Instituto de Fisica del Sur (IFISUR), Departamento de Fisica, Universidad Nacional del Sur (UNS), CONICET) ;
  • Dodero, Gabriela A. (CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas)) ;
  • Allegretti, Patricia E. (CEDECOR (Centro de Estudio de Compuestos Organicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)) ;
  • Ruiz, Danila L. (CEDECOR (Centro de Estudio de Compuestos Organicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)) ;
  • Laurella, Sergio L. (CEDECOR (Centro de Estudio de Compuestos Organicos), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP))
  • Received : 2022.05.23
  • Accepted : 2022.08.08
  • Published : 2023.02.01

Abstract

Two carbonaceous adsorbents CAT and CARBOPAL were tested for reducing the concentration of the three herbicides in water: 2,4-D (2,4-dichlorophenoxyacetic acid), TCP (2,4,6-trichlorophenol) and metolachlor. Textural and chemical characterization of the adsorbents include nitrogen isotherms, FTIR, titration and thermogravimetric analyses. Adsorption was studied in discontinuous adsorption experiments at different pH values. The experimental adsorption isotherms data were fitted to four theoretical models. Adsorbent characterization reveals that CAT has higher micropore area, lower pore diameter and lower acidity than CARBOPAL. The adsorption is a second-order process and the isotherms best fitted to Sips model. The efficiency of the process depends mainly on the charge of the adsorbate for TCP and 2,4-D, but it depends on the charge of the surface for metolachlor. Adsorption capacity is higher on CAT for 2,4-D and TCP (small molecules), and it is higher on CARBOPAL for metolachlor (large molecules). Theoretical calculations clearly support this assumption.

Keywords

Acknowledgement

Financial support is acknowledged to Facultad de Ciencias Exactas-UNLP (Universidad Nacional de La Plata, Buenos Aires, Argentina), CONICET (Consejo Nacional de Investigaciones Cientificas y Tecnicas) and CIC BA (Comision de Investigaciones Cientificas de la Provincia de Buenos Aires).

References

  1. IARC monographs on the evaluation of carcinogenic risks to humans: an updating of IARC Monographs, Supplement 7. Lyon, France: WHO; 1-42(1987).
  2. EPA, 2007. Federal Register: 2.4-D, 2.4-DP, and 2.4-DB, Decision Not to Initiate Special Review. www.epa.gov/fedrgstr/EPAPEST/2007/August/Day-08/p15109.
  3. Forest Health Protection, 2006. 2,4-D human health and ecological risk assessment final report. USDA Forest Service, Arlington, pp. xv-xxiv.
  4. Tai, C. and Jiang, G., "Dechlorination and Destruction of 2,4,6-trichlorophenol and Pentachlorophenol Using Hydrogen Peroxide as the Oxidant Catalyzed by Molybdate Ions Under Basic Condition," Chemosphere, 59, 321-326(2005). https://doi.org/10.1016/j.chemosphere.2004.10.024
  5. Gao, R. and Wang, J., "Effects of pH and Temperature on Isotherm Parameters of Chlorophenols Biosorption to Anaerobic Granular Sludge," J. Hazard. Mater., 145, 398-403(2007). https://doi.org/10.1016/j.jhazmat.2006.11.036
  6. Agency for toxic substances disease registry (ATSDR), Toxicological Profile for 2,4,6-Trichlorophenol, U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA, 1990.
  7. Hameed, B. H., "Equilibrium and Kinetics Studies of 2,4,6-trichlorophenol Adsorption Onto Activated Clay," Coll. Surf. A, 307, 45-52(2007). https://doi.org/10.1016/j.colsurfa.2007.05.002
  8. Howard, P., Handbook of Environmental Degradation Rates, Lewis Publishers, United States (1991).
  9. Heydens, W. F., Lamb, I. C. and Wilson, A. G. E., "Chloracetanilides in Hayes' Handbook of Pesticide Toxicology, 3rd ed. Elsevier Science Publishing Co Inc, United States (2010).
  10. https://tesis.ipn.mx/handle/123456789/24377.
  11. O'Brien & Gere Engineering Inc., Innovative Engineering Technologies for Hazardous Waste Remediation, ITP, United States (1995).
  12. http://www.quimicaviva.qb.fcen.uba.ar/v10n2/garcia.html.
  13. Bandala, E. R., Octaviano, J. A., Albiter, V. and Torres, L. G., Designing and Applying Treatment Technologies: Remediation of Chlorinated and Recalcitrant Compounds, Battelle Press, Ohio (1998).
  14. Torres, L., Mijailova, P. and Moeller, G., "Uso de Cepas Adaptadas a la Degradacion de Compuestos Organicos Recalcitrantes y Toxicos," Ingenieria Hidraulica en Mexico, 12(3), 15-25(1997).
  15. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57(4), 603-619(1985). https://doi.org/10.1351/pac198557040603
  16. Ren, X., Chen, C., Nagatsu, M. and Wang, X., "Carbon Nanotubes as Adsorbents in Environmental Pollution Management: A Review," Chem. Eng. J., 170(2), 395-410(2011). https://doi.org/10.1016/j.cej.2010.08.045
  17. Unob, F., Wongsiri, B., Phaeon, N., Puanngam, M. and Shiowatana, J., "Reuse of Waste Silica as Adsorbent for Metal Removal by Iron Oxide Modification," J. Hazard. Mater., 142(1), 455-462 (2007). https://doi.org/10.1016/j.jhazmat.2006.08.049
  18. Spaltro, A., Caputo, M., Pila, M., Colasurdo, D., Laurella, S., Ruiz, D., Schiavoni, M. and Allegretti, P., "Removal of Plaguicides MCPA and Imazapic from Aqueous Solution Using Carbonaceous Materials," Int. J. Eng. Res. Management, 3(12), 20-28(2016).
  19. Laurella, S., Pis Diez, C., Lick, I., Erben, M. and Allegretti, P., "Evaluation of Silica as an Adsorbent for Carbendazim from Aqueous Solutions," Int. J. Eng. Tech. Res., 3(2), 96-101(2015).
  20. El-Sheikh, A. H., Sweileh, J. A., Al-Degs, Y. S., Insisi, A. A. and Al-Rabady, N., "Critical Evaluation and Comparison of Enrichment Efficiency of Multi-walled Carbon Nanotubes, C18 Silica and Activated Carbon Towards Some Pesticides from Environmental Waters," Talanta, 74(5), 1675-1680(2008). https://doi.org/10.1016/j.talanta.2007.09.005
  21. Taha, S. M., Amer, M. E., Elmarsafy, A. E. and Elkady, M. Y., "Adsorption of 15 Different Pesticides on Untreated and Phosphoric Acid Treated Biochar and Charcoal from Water," J. Environ. Chem. Eng., 2, 2013-2025(2014). https://doi.org/10.1016/j.jece.2014.09.001
  22. Spaltro, A., Simonetti, S., Alvarez Torrellas, S., Garcia Rodriguez, J., Ruiz, D., Juan, A. and Allegretti, P., "Adsorption of Bentazone on CAT and CARBOPAL Activated Carbon: Experimental and Computational Study," Applied Surface Science, 433, 487-501 (2018). https://doi.org/10.1016/j.apsusc.2017.10.011
  23. Padmesh, T. V. N., Vijayaraghavan, K., Sekaran, G. and Velan, M., "Application of Twoand Three-Parameter Isotherm Models: Biosorption of Acid Red 88 onto Azolla microphylla," Bioremediat. J., 10(1), 37-44(2006). https://doi.org/10.1080/10889860600842746
  24. Foo, K. Y. and Hameed, B. H., "Insights into the Modeling of Adsorption Isotherm Systems," Chem. Eng. J., 156(1), 2-10(2010). https://doi.org/10.1016/j.cej.2009.09.013
  25. Wolff, W. F., "A Model of Active Carbon," J. Phys. Chem., 63, 653-659(1959). https://doi.org/10.1021/j150575a005
  26. Walker Jr., P. L., "Carbon - An Old But New Material," Carbon, 28, 261-279(1990). https://doi.org/10.1016/0008-6223(90)90001-F
  27. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. and Fox, D. J., Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.
  28. Delgado L. F., Charles, P., Glucina, K. and Morlay, C., "The Removal of Endocrine Disrupting Compounds, Pharmaceutically Activated Compounds and Cyanobacterial Toxins During Drinking Water Preparation Using Activated Carbon - A Review," Sci. Total Environ., 435-436, 509-525(2012). https://doi.org/10.1016/j.scitotenv.2012.07.046
  29. Giles, C. H., MacEwan, T. H., Nakhwa, S. N. and Smith, D., "Studies in Adsorption: Part XI. A System of Classification of Solution Adsorption Isotherms and Its Use in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Area Solids," J. Chem. Soc., 3973-3993(1960).
  30. Hameed, B. H., Tan, I. A. W. and Ahmad, A. L., "Adsorption Isotherm, Kinetic Modeling and Mechanism of 2,4,6-trichlorophenol on Coconut Husk-based Activated Carbon," Chemical Engineering J., 144(2), 235-244(2008). https://doi.org/10.1016/j.cej.2008.01.028
  31. Aksu, Z. and Kabasakal, E., "Batch Adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from Aqueous Solution by Granular Activated Carbon," Separation and Purification Technology, 35(3), 223-240(2004). https://doi.org/10.1016/S1383-5866(03)00144-8
  32. Spaltro, A., Pila, M. N., Simonetti, S., Alvarez-Torrellas, S., Garcia Rodriguez, J., Ruiz, D., Diaz Company, A., Juan, A. and Allegretti, P., "Adsorption and Removal of Phenoxy Acetic Herbicides from Water by Using Commercial Activated Carbons: Experimental and Computational Studies," J. of Contaminant Hydrology, 218, 84-93(2018). https://doi.org/10.1016/j.jconhyd.2018.10.003
  33. http://www.molinspiration.com.