DOI QR코드

DOI QR Code

Electrochemical Sensor for Non-Enzymatic Glucose Detection Based on Flexible CNT Fiber Electrode Dispersed with CuO Nanoparticles

산화구리 나노입자가 분산된 CNT fiber 유연 전극 기반의 글루코스 검출용 비효소적 전기화학센서

  • Min-Jung, Song (Department of Nano Convergence Engineering, Seokyeong University)
  • 송민정 (서경대학교 나노융합공학과)
  • Received : 2022.09.07
  • Accepted : 2022.10.31
  • Published : 2023.02.01

Abstract

This study is a basic research for the development of high performance flexible electrode material. To enhance its electrochemical property, CuO nanoparticles (CuO NPs) were introduced and dispersed on surface of CNT fiber through electrochemical deposition method. The CNT fiber/CuO NPs electrode was fabricated and applied to electrochemical non-enzymatic glucose sensor. Surface morphology and elemental composition of the CNT fiber/CuO NPs electrode was characterized by scanning electron microscope (SEM) with energy dispersive X-ray spectrometry (EDS). And its electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fiber/CuO NPs electrode exhibited the good sensing performance for glucose detection such as high sensitivity, wide linear range, low detection limit and good selectivity due to synergetic effect of CNT fiber and CuO NPs. Based on the unique property of CNT fiber, CuO NPs were provide large surface area, enhanced electrocatalytic activity, efficient electron transport property. Therefore, it is expected to develop high performance flexible electrode materials using various nanomaterials.

본 연구는 고성능 유연 전극 소재 개발을 위한 기초 연구로, 유연 전극 소재의 성능을 향상시키기 위해 금속 산화물 CuO nanoparticles (CuO NPs)를 도입하여 탄소나노튜브 섬유(carbon nanotube fiber; CNT fiber) 표면 위에 전기화학적 증착시켜 CNT fiber/CuO NPs 전극을 합성하고, 이를 전기화학적 비효소 글루코스 센서에 적용하였다. 이 전극의 표면 및 elemental composition 분석은 주사전자 현미경(SEM)과 에너지분산형 분광분석법(EDS)을 이용하였으며, 전극의 전기화학적 특성 및 글루코스에 대한 센싱 성능은 순환전압 전류법(CV)과 전기화학 임피던스법(EIS), 시간대전류법(CA)을 통해 조사되었다. CNT fiber/CuO NPs 전극은 CNT fiber의 우수한 특성과 함께 CuO NPs 도입에 따른 약 2.6배의 유효 전극면적(active surface area) 증가 효과와 11배 정도의 향상된 전자전달(electron transfer) 특성 및 우수한 전기적 촉매 활성(electrocatalytic activity) 덕분에 CNT fiber 유연 기반 전극의 글루코스 검출에 대한 성능이 개선되었다. 따라서, 본 연구를 기반으로 다양한 나노구조체를 활용한 고성능 유연 전극 소재 개발이 기대된다.

Keywords

Acknowledgement

본 연구는 2022년도 서경대학교 교내연구비 지원에 의하여 이루어졌음.

References

  1. Ghanbari, K. and Babaei, Z., "Fabrication and Characterization of Non-enzymatic Glucose Sensor Based on Ternary NiO/CuO/ Polyaniline Nanocomposite," Anal. Biochem., 498, 37-46(2016). https://doi.org/10.1016/j.ab.2016.01.006
  2. Jagadeesan, M. S., Movlaee, K., Krishnakumar, T., Leonardi, S. G. and Neri, G., "One-step Microwave-assisted Synthesis and Characterization of Novel CuO Nanodisks for Non-enzymatic Glucose Sensing," J. Electroananl. Chem., 835, 161-169(2019). https://doi.org/10.1016/j.jelechem.2019.01.024
  3. Yang, J., Jiang, L. C., Zhang, W. D. and Gunasekaran, S., "A Highly Sensitive Non-enzymatic Glucose Sensor Based on a Simple Two-step Electrodeposition of Cupric Oxide (CuO) Nanoparticles Onto Multi-walled Carbon Nanotube Arrays," Talanta, 82, 25-33 (2010). https://doi.org/10.1016/j.talanta.2010.03.047
  4. Rong, L. Q., Yang, C., Qian, Q. Y. and Xia, X. H., "Study of the Nonenzymatic Glucose Sensor Based on Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes," Talanta, 72, 819-824(2007). https://doi.org/10.1016/j.talanta.2006.12.037
  5. Dilmac, Y. and Guler, M., "Fabrication of Non-enzymatic Glucose Sensor Dependent Upon Au Nanoparticles Deposited on Carboxylated Graphene Oxide," J. Electroanal. Chem., 864, 114091 (2020).
  6. Ye, J. S., Chen, C. W. and Lee, C. L., "Pd Nanocube as Nonenzymatic Glucose Sensor," Sens. Actuators B, 208, 569-574(2015). https://doi.org/10.1016/j.snb.2014.11.091
  7. Liu, Y., Teng, H., Hou, H. and You, T., "Nonenzymatic Glucose Sensor Based on Renewable Electrospun Ni Nanoparticle-loaded Carbon Nanofiber Paste Electrode," Biosens. Bioelectron., 24, 3329-3334(2009). https://doi.org/10.1016/j.bios.2009.04.032
  8. Ahmad, R., Khan, M., Tripathy, N., Khan, M. R, and Khosla, A., "Hydrothermally Synthesized Nickel Oxide Nanosheets for Non-enzymatic Electrochemical Glucose Detection," J. Electrochem. Soc., 167, 107504(2020).
  9. Song, M. J., Lee, S. K., Kim, J. H. and Lim, D. S., "Non-enzyMatic Glucose Sensor Based on Cu Electrode Modified with CuO Nanoflowers," J. Electrochem. Soc., 160, B43-B46(2013). https://doi.org/10.1149/2.037304jes
  10. Sattarahmady, N. and Heli, H., "A Non-enzymatic Amperometric Sensor for Glucose Based on Cobalt Oxide Nanoparticles," J. Exp. Nanosci., 7, 529-546(2012). https://doi.org/10.1080/17458080.2010.539275
  11. Dayakar, T., Venkateswara, R. K., Bikshalu, K., Rajendar, V. and Park, S. H., "Novel Synthesis and Structural Analysis of Zinc Oxide Nanoparticles for the Non-enzymatic Glucose Biosensor," Mater. Sci. Eng. C, 75, 1472-1479(2017). https://doi.org/10.1016/j.msec.2017.02.032
  12. Kailasa, S., Geeta, B., Jayarambabu, N., Reddy, R. K. K., Sharma, S. and Rao, K. V., "Conductive Polyaniline Nanosheets (CPANINS) for a Non-enzymatic Glucose Sensor," Mater. Lett., 245, 118-121(2019). https://doi.org/10.1016/j.matlet.2019.02.103
  13. Marimuthu, T., Mohamad, S. and Alias, Y., "Needle-like Polypyrrole-NiO Composite for Non-enzymatic Detection of Glucose," Synth. Met., 207, 35-41(2015). https://doi.org/10.1016/j.synthmet.2015.06.007
  14. Song, J., Xu, L., Zhou, C., Xing, R., Dai, Q., Liu, D. and Song, H., "Synthesis of Graphene Oxide Based CuO Nanoparticles Composite Electrode for Highly Enhanced Nonenzymatic Glucose Detection," ACS Appl. Mater. Interfaces, 5, 12928-12934(2013). https://doi.org/10.1021/am403508f
  15. Liu, Y., Sun, G., Jiang, C., Zheng, X. T., Zheng, L. and Li, C. M., "Highly Sensitive Detection of Hydrogen Peroxide at a Carbon Nanotube Fiber Microelectrode Coated with Palladium Nanoparticles," Microchim. Acta, 181, 63-70(2014). https://doi.org/10.1007/s00604-013-1066-8
  16. Wang, Joseph, Deo, R. P., Poulin, P. and Mangey, M., "Carbon Nanotube Fiber Microelectrodes," J. Am. Chem. Soc., 125, 14706- 14707(2003). https://doi.org/10.1021/ja037737j
  17. Jiangtao, D., Zhang, X., Yong, Z., Zhang, Y., Li, D., Li, R. and Li, Q., "Carbon-nanotube Fibers for Wearable Devices and Smart Textiles," Adv. Mater., 28, 10529-10538(2016). https://doi.org/10.1002/adma.201601186
  18. Jung, C., Liu, W., Hao, H., Wang, H., Meng, F. and Lau, D., "Regenerated and Rotation-induced Cellulose-wrapped Oriented CNT Fibers for Wearable Multifunctional Sensors," Nanoscale, 12, 16305-16314(2020). https://doi.org/10.1039/d0nr03684f
  19. Cho, S. Y., Yu, H., Choi, J., Kang, H., Park, S., Jang, J. S., Hong, H. J., Kim, I. D., Lee, S. K., Jeong, H. S. and Jung, H. T., "Continuous Meter-scale Synthesis of Weavable Tunicate Cellulose/carbon Nanotube Fibers for High Performance Wearable Sensors," ACS Nano, 13, 9332-9341(2019). https://doi.org/10.1021/acsnano.9b03971
  20. Miao, X. M., Yuan, R., Chai, Y. Q., Shi, Y. T. and Yuan, Y. Y., "Direct Electocatalytic Reduction of Hydrogen Peroxide Based on Nafion and Copper Oxide Nanoparticles Modified Pt Electrode," J. Electoanal. Chem., 612, 157-163(2008). https://doi.org/10.1016/j.jelechem.2007.09.026
  21. Yoon, S. S., Ramadoss, A., Saravanakumar, B. and Kim, S. J., "Novel Cu/CuO/ZnO Hybrid Hierarchical Nanostructures for Non-enzymatic Glucose Sensor Application," J. Electroanal. Chem., 717-718, 90-95(2014). https://doi.org/10.1016/j.jelechem.2014.01.012
  22. Singh, B., Bhatia, V. and Jain, V. K., "Electrostatically Functionalized Multi-walled Carbon Nanotubes Based Flexible and Non-enzymatic Biosensor for Glucose Detection," Sens. Transducers, 146, 69-77(2012).
  23. Teo, W. Z., Ambrosi, A. and Pumera, M., "Direct Electrochemistry of Copper Oxide Nanoparticles in Alkaline Media," Electrochem. Commun., 28, 51-53(2013). https://doi.org/10.1016/j.elecom.2012.12.006
  24. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, New York(1980).
  25. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao, V. K., Vijayaraghavan, R., "Immobilization of AcetylchoLineesterase-choline Oxidase on a Gold-platinum Bimetallic Nanoparticles Modified Glassy Carbon Electrode for the Sensitive Detection of Organophosphate Pesticides, Carbamates and Nerve Agents," Biosens. Bioelectron., 25, 832-838(2009). https://doi.org/10.1016/j.bios.2009.08.036
  26. Song, M. J., "Investigation on Electrochemical Property of CNT Fibers and Its Non-enzymatic Sensing Performance for Glucose Detection," Korean Chem. Eng. Res., 59, 606-610(2021).
  27. Torz-Piotrowska, R., Wrzyszczynski, A., Paprocki, K., Szreiber, M., Uniszkiewicz, C. and Staryga, E., "The Application of CVD Diamond Films in Cyclic Voltammetry," J. Achiev. Mater. Manuf. Eng., 37, 486-491(2009).
  28. Wu, J. and Qu, Y., "Mediator-free Amperometeric Determination of Glucose Based on Direct Electron Transfer Between Glucose Oxidase and an Oxidized Boron-doped Diamond Electrode," Anal. Bioanal. Chem., 385, 1330-1335(2006). https://doi.org/10.1007/s00216-006-0534-y
  29. Meher, S. K. and Rao, G. R., "Archetypal Sandwich-structured CuO for High Performance Non-enzymatic Sensing of Glucose," Nanoscale, 5, 2089-2099(2013). https://doi.org/10.1039/c2nr33264g
  30. Zhuang, Z., Su, X., Yuan, H., Sun, Q., Xiao, D. and Choi, M. M., "An Improved Sensitivity Non-enzymatic Glucose Sensor Based on a CuO Nanowire Modified Cu Electrode," Analyst, 133, 126-132(2008). https://doi.org/10.1039/B712970J