DOI QR코드

DOI QR Code

Experimental investigation of the effect of the addition of Aerosil 200 nanoparticles on the water absorption of polymer concrete

  • A.M., Fattahi (Department of Mechanical Engineering, Tabriz Branch, Islamic Azad University) ;
  • Babak, Safaei (Department of Mechanical Engineering, Eastern Mediterranean University) ;
  • Elham, Moaddab (Seraj Institute of Higher Education) ;
  • Zahra, Pezeshki (Department of Mechanical Engineering, Eastern Mediterranean University)
  • Received : 2022.04.01
  • Accepted : 2022.06.01
  • Published : 2023.01.25

Abstract

In this work, the effect of the addition of Aerosil 200, an insulating resin applied in many industries, on the water absorption of cement plast mixture has been experimentally evaluated. First, the preparation stages of cement plast mixture was evaluated based on corresponding standards and then, the effect of the addition of Aerosil 200 nanoparticles (NPs) to cement plast mixtures with sand weight percentage range of 0-0.1% on the variation of water absorption properties was evaluated based on National Standard Institution of Iran 20185 for Concrete Flooring Blocks - Requirements and Test Procedures. Based on the obtained results, it could be found that excessive addition of NPs did not affect the physical properties of the final product. Water absorption percentage was increased in the weight percentage of cement. By the increase of the amount of Aerosil 200 NPs in the prepared cement plast mixture, the percentage of water absorption in weight percentage of sand was decreased. Cement plast with NPs presented significantly lower water absorption than that without NPs.

Keywords

References

  1. Acevedo-Martinez, E., Gomez-Zamorano, L.Y. and EscalanteGarcia, J.I. (2012), "Portland cement-blast furnace slag mortars activated using waterglass: - Part 1: Effect of slag replacement and alkali concentration", Constr. Build. Mater., 37, 462-469. https://doi.org/10.1016/J.CONBUILDMAT.2012.07.041.
  2. Al-Azzawi, A.A., Shallal, M.S., Al-Azzawi, A.A. and Shallal, M.S. (2021), "Behavior of reinforced sustainable concrete hollow-core slabs", Adv. Concr. Const., 11(4), 271. https://doi.org/10.12989/ACC.2021.11.4.271.
  3. Amor, F., Baudys, M., Racova, Z., Scheinherrova, L., Ingrisova, L. and Hajek, P. (2022), "Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete", Case Stud. Constr. Mater., 16, e00965. https://doi.org/10.1016/J.CSCM.2022.E00965.
  4. Arani, A.G., Farazin, A., Mohammadimehr, M., Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327. https://doi.org/10.12989/ANR.2021.10.4.327.
  5. Arbabi, A., Kolahchi, R., Bidgoli, M.R., Arbabi, A., Kolahchi, R. and Bidgoli, M.R. (2020), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25(1), 97. https://doi.org/10.12989/SSS.2020.25.1.097.
  6. Bahari, A., Sadeghi-Nik, A., Cerro-Prada, E., Sadeghi-Nik, A., Roodbari, M. and Zhuge, Y. (2021), "One-step random-walk  process of nanoparticles in cement-based materials", J. Central South Univ., 28(6), 1679-1691. https://doi.org/10.1007/S11771-021-4726-6.
  7. Basova, T.V., Vikulova, E.S., Dorovskikh, S.I., Hassan, A. and Morozova, N.B. (2021), "The use of noble metal coatings and nanoparticles for the modification of medical implant materials", Mater. Des, 204, 109672. https://doi.org/10.1016/J.MATDES.2021.109672.
  8. Carrieri, M., Guzzardo, C., Farcas, D. and Cena, L.G. (2020), "Characterization of silica exposure during manufacturing of artificial stone countertops", Int. J. Environ. Res. Public Health., 17(12), 4489. https://doi.org/10.3390/IJERPH17124489
  9. Chang, T.P., Shih, J.Y., Yang, K.M. and Hsiao, T.C. (2007), "Material properties of portland cement paste with nano-montmorillonite", J. Mater. Sci., 42(17), 7478-7487. https://doi.org/10.1007/S10853-006-1462-0/TABLES/6.
  10. Dong, W., Li, W., Guo, Y., Qu, F., Wang, K. and Sheng, D. (2022), "Piezoresistive performance of hydrophobic cement-based sensors under moisture and chloride-rich environments", Cement Concr. Compos., 126, 104379. https://doi.org/10.1016/J.CEMCONCOMP.2021.104379.
  11. Dongxu, L., Xuequan, W., Jinlin, S. and Yujiang, W. (2000), "The influence of compound admixtures on the properties of high-content slag cement", Cement Concr. Compos., 30(1), 45-50. https://doi.org/10.1016/S0008-8846(99)00210-0.
  12. Drexler, K.E. (1981), "Molecular engineering: An approach to the development of general capabilities for molecular manipulation", Proceedings of the National Academy of Sciences of the United States of America., 78(9), 5275. https://doi.org/10.1073/PNAS.78.9.5275.
  13. Erdogdu, S., Kandil, U., Nayir, S., Erdogdu, S., Kandil, U. and Nayir, S. (2019), "Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete", Adv. Concr. Const., 8(2), 139. https://doi.org/10.12989/ACC.2019.8.2.139.
  14. Escalante-Garcia, J.I., Espinoza-Perez, L.J., Gorokhovsky, A. and Gomez-Zamorano, L.Y. (2009), "Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement", Constr. Build. Mater., 23(7), 2511-2517. https://doi.org/10.1016/J.CONBUILDMAT.2009.02.002.
  15. Escalante-Garcia, J.I. and Sharp, J.H. (2004), "The chemical composition and microstructure of hydration products in blended cements", Cement Concr. Compos., 26(8), 967-976. https://doi.org/10.1016/J.CEMCONCOMP.2004.02.036.
  16. Fattahi, A.M., Safaei, B., Qin, Z., Chu, F., (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177. https://doi.org/10.12989/SCS.2021.38.2.177
  17. Fu, Q., Zhang, Z., Zhao, X., Xu, W. and Niu, D. (2022), "Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review", J. Build. Eng., 50, 104220. https://doi.org/10.1016/J.JOBE.2022.104220.
  18. Galetakis, M. and Raka, S. (2004), "Utilization of limestone dust for artificial stone production: An experimental approach", Miner. Eng., 17(2), 355-357. https://doi.org/10.1016/J.MINENG.2003.10.031.
  19. Garrault, S. and Nonat, A. (2001), "Hydrated layer formation on tricalcium and dicalcium silicate surfaces: Experimental study and numerical simulations", Langmuir., 17(26), 8131-8138. https://doi.org/10.1021/LA011201Z.
  20. Hoy, R.F., Baird, T., Hammerschlag, G., Hart, D., Johnson, A.R., King, P., and Yates, D.H. (2018), "Artificial stone-associated silicosis: A rapidly emerging occupational lung disease", Occup. Environ. Med., 75(1), 3-5. https://doi.org/10.1136/OEMED-2017-104428.
  21. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature ., 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  22. Jafarzadeh, S. and Jafari, S.M. (2020), "Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials", Crit. Rev. Food Sci. Nutr., 1-19. https://doi.org/10.1080/10408398.2020.1783200.
  23. Jamkhande, P.G., Ghule, N.W., Bamer, A.H. and Kalaskar, M.G. (2019), "Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications", J. Drug Deliv. Sci. Technol., 53, 101174. https://doi.org/10.1016/J.JDDST.2019.101174.
  24. Jo, Y.K. (2020), "Adhesion in tension of polymer cement mortar by curing conditions using polymer dispersions as cement modifier", Constr. Build. Mater., 242, 118134. https://doi.org/10.1016/J.CONBUILDMAT.2020.118134.
  25. Kaloop, M.R., Elrahman, M.A., Hu, J.W., Kaloop, M.R., Elrahman, M.A. and Hu, J.W. (2022), "Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review", Adv. Nano Res., 12(1), 1. https://doi.org/10.12989/ANR.2022.12.1.001.
  26. Kamasamudram, K.S., Ashraf, W. and Landis, E.N. (2020), "Cellulose nanocomposites for performance enhancement of ordinary portland cement-based materials", J. SAGE., 2675(9), 11-20. https://doi.org/10.1177/0361198120958421.
  27. Kawashima, S., Hou, P., Corr, D.J. and Shah, S.P. (2013), "Modification of cement-based materials with nanoparticles", Cement Concr. Compos., 36(1), 8-15. https://doi.org/10.1016/J.CEMCONCOMP.2012.06.012.
  28. Kim, J.H., Beacraft, M. and Shah, S.P. (2010), "Effect of mineral admixtures on formwork pressure of self-consolidating concrete", Cement Concr. Compos., 32(9), 665-671. https://doi.org/10.1016/J.CEMCONCOMP.2010.07.018.
  29. Kim, M.S., Jun, Y., Lee, C. and Oh, J.E. (2013), "Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag", Cement Concr. Compos., 54, 208-214. https://doi.org/10.1016/J.CEMCONRES.2013.09.011.
  30. Krajci, L., Kuliffayova, M. and Janotka, I. (2013), "Ternary cement composites with metakaolin sand and calcined clayey diatomite", Procedia Eng., 65, 7-13. https://doi.org/10.1016/J.PROENG.2013.09.003.
  31. Lee, M.Y., Ko, C.H., Chang, F.C., Lo, S.L., Lin, J.D., Shan, M.Y. and Lee, J.C. (2008), "Artificial stone slab production using waste glass, stone fragments and vacuum vibratory compaction", Cement Concr. Compos., 30(7), 583-587. https://doi.org/10.1016/J.CEMCONCOMP.2008.03.004.
  32. Li, Q., Xie, B., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Brazil. Soc. Mech. Sci. Eng., 42(5), 1-18. https://doi.org/10.1007/S40430-020-02317-2/FIGURES/6
  33. Li, G. (2004), "Properties of high-volume fly ash concrete incorporating nano-SiO2", Cement Concr. Compos., 34(6), 1043-1049. https://doi.org/10.1016/J.CEMCONRES.2003.11.013.
  34. Li, H., Wu, T., Gao, Z., Wang, X., Ma, H., Han, Q. and Qin, Z. (2020), "An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites", Int. J. Mech. Sci., 184, 105818. https://doi.org/10.1016/J.IJMECSCI.2020.105818.
  35. Liu, H., Li, Q., Ni, S., Wang, L., Yue, G. and Guo, Y. (2022), "Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials", J. Build. Eng., 46, 103750. https://doi.org/10.1016/J.JOBE.2021.103750.
  36. Mohammadi, M., Khodamorady, M., Tahmasbi, B., Bahrami, K. and Ghorbani-Choghamarani, A. (2021), "Boehmite nano-particles as versatile support for organic-inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis", J. Ind. Eng. Chem., 97, 1-78. https://doi.org/10.1016/J.JIEC.2021.02.001.
  37. Onaizi, A.M., Huseien, G.F., Lim, N.H.A.S., Amran, M. and Samadi, M. (2021), "Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review", Constr. Build. Mater., 306, 124850. https://doi.org/10.1016/J.CONBUILDMAT.2021.124850.
  38. Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nano-composite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/J.TWS.2021.108127
  39. Pan, S., Feng, J., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2022), "A comparative experimental study on damping properties of epoxy nanocomposite beams reinforced with carbon nanotubes and graphene nanoplatelets", Nanotechnol. Rev, 11(1), 1658-1669. https://doi.org/10.1515/NTREV-2022-0107
  40. Razeghi, M. (2018), Fundamentals of solid state engineering, Fundamentals of Solid State Engineering, Springer International Publishing. https://doi.org/10.1007/978-3-319-75708-7.
  41. Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/EPJP/S13360-021-01632-4.
  42. Safaei, B., Davodian, E., Fattahi, A.M. and Asmael, M. (2021), "Calcium carbonate nanoparticles effects on cement plast properties", Microsyst. Technol., 27(8), 3059-3076. https://doi.org/10.1007/S00542-020-05136-6.
  43. Safaei, B., Onyibo, E.C. and Hurdoganoglu, D. (2022), "Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method", Facta Univ. Series Mech. Eng., 20(2), 279-306 https://doi.org/10.22190/FUME220201009S
  44. Sajedi, F. and Razak, H.A. (2011), "Comparison of different methods for activation of ordinary Portland cement-slag mortars", Constr. Build. Mater., 25(1), 30-38. https://doi.org/10.1016/J.CONBUILDMAT.2010.06.060.
  45. Shao, L., Feng, P., Zuo, W., Wang, H., Geng, Z., Liu, Q., and Liu, Z. (2022), "A novel method for improving the printability of cement-based materials: Controlling the releasing of capsules containing chemical admixtures", Cement Concr. Compos., 128, 04456. https://doi.org/10.1016/J.CEMCONCOMP.2022.104456.
  46. Shi, T., Lan, Y., Hu, Z., Wang, H., Xu, J. and Zheng, B. (2022), "Tensile and fracture properties of silicon carbide whisker-modified cement-based materials", Int. J. Concr. Struct. Mater., 16(1), 1-13. https://doi.org/10.1186/S40069-021-00495-4/FIGURES/16.
  47. Voigt, T., Mbele, J.-J., and Shah, S. P. (2010), "Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement", J. Mater. Civil Eng., 22(2), 196-206. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:2(196).
  48. Wang, D., Xiao, J. and Duan, Z. (2022), "Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects", Constr. Build. Mater, 314, 125646. https://doi.org/10.1016/J.CONBUILDMAT.2021.125646
  49. Wang, Y., Ermilov, V., Strigin, S. and Safaei, B. (2021), "Multilevel modeling of the mechanical properties of graphene nanocomposites/polymer composites", Microsyst. Technol., 27(12), 4241-4251. https://doi.org/10.1007/S00542-021-05218-Z/FIGURES/8
  50. Xue, C., Tapas, M.J. and Sirivivatnanon, V. (2022), "Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review", J. Sust. Cement Based Mater., 1-23. https://doi.org/10.1080/21650373.2022.2031334.
  51. Yang, H., Monasterio, M., Zheng, D., Cui, H., Tang, W., Bao, X. and Chen, X. (2021), "Effects of nano silica on the properties of cement-based materials: A comprehensive review", Constr. Build. Mater., 282, 122715. https://doi.org/10.1016/J.CONBUILDMAT.2021.122715.
  52. Yi, H., Sahmani, S. and Safaei, B. (2020), "On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions", Arch. Civil Mech. Eng., 20(2), 1-23. https://doi.org/10.1007/S43452-020-00047-9/FIGURES/7
  53. Yin, B., Wu, C., Hou, D., Li, S., Jin, Z., Wang, M. and Wang, X. (2021), "Research and application progress of nano-modified coating in improving the durability of cement-based materials", Prog. Organic Coat., 161, 106529. https://doi.org/10.1016/J.PORGCOAT.2021.106529.
  54. Zhang, A., Yang, W., Ge, Y., Du, Y. and Liu, P. (2021), "Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study", J. Build. Eng., 34, 101936. https://doi.org/10.1016/J.JOBE.2020.101936.
  55. Zhang, Y., Zhang, W., Zhang, Y., Zhang, Y., Zhang, W. and Zhang, Y. (2019), "Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete", Adv. Concr. Const., 8(1), 47. https://doi.org/10.12989/ACC.2019.8.1.047.
  56. Zhu, J., Zhu, L., Feng, C., Guan, X., Sun, Y. and Zhang, W. (2021), "Effect of Nano-Si3N4 on the Mechanical Properties of Cement-Based Materials", Crystals., 11(12), 1556. https://doi.org/10.3390/CRYST11121556.