References
- Acevedo-Martinez, E., Gomez-Zamorano, L.Y. and EscalanteGarcia, J.I. (2012), "Portland cement-blast furnace slag mortars activated using waterglass: - Part 1: Effect of slag replacement and alkali concentration", Constr. Build. Mater., 37, 462-469. https://doi.org/10.1016/J.CONBUILDMAT.2012.07.041.
- Al-Azzawi, A.A., Shallal, M.S., Al-Azzawi, A.A. and Shallal, M.S. (2021), "Behavior of reinforced sustainable concrete hollow-core slabs", Adv. Concr. Const., 11(4), 271. https://doi.org/10.12989/ACC.2021.11.4.271.
- Amor, F., Baudys, M., Racova, Z., Scheinherrova, L., Ingrisova, L. and Hajek, P. (2022), "Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete", Case Stud. Constr. Mater., 16, e00965. https://doi.org/10.1016/J.CSCM.2022.E00965.
- Arani, A.G., Farazin, A., Mohammadimehr, M., Arani, A.G., Farazin, A. and Mohammadimehr, M. (2021), "The effect of nanoparticles on enhancement of the specific mechanical properties of the composite structures: A review research", Adv. Nano Res., 10(4), 327. https://doi.org/10.12989/ANR.2021.10.4.327.
- Arbabi, A., Kolahchi, R., Bidgoli, M.R., Arbabi, A., Kolahchi, R. and Bidgoli, M.R. (2020), "Experimental study for ZnO nanofibers effect on the smart and mechanical properties of concrete", Smart Struct. Syst., 25(1), 97. https://doi.org/10.12989/SSS.2020.25.1.097.
- Bahari, A., Sadeghi-Nik, A., Cerro-Prada, E., Sadeghi-Nik, A., Roodbari, M. and Zhuge, Y. (2021), "One-step random-walk process of nanoparticles in cement-based materials", J. Central South Univ., 28(6), 1679-1691. https://doi.org/10.1007/S11771-021-4726-6.
- Basova, T.V., Vikulova, E.S., Dorovskikh, S.I., Hassan, A. and Morozova, N.B. (2021), "The use of noble metal coatings and nanoparticles for the modification of medical implant materials", Mater. Des, 204, 109672. https://doi.org/10.1016/J.MATDES.2021.109672.
- Carrieri, M., Guzzardo, C., Farcas, D. and Cena, L.G. (2020), "Characterization of silica exposure during manufacturing of artificial stone countertops", Int. J. Environ. Res. Public Health., 17(12), 4489. https://doi.org/10.3390/IJERPH17124489
- Chang, T.P., Shih, J.Y., Yang, K.M. and Hsiao, T.C. (2007), "Material properties of portland cement paste with nano-montmorillonite", J. Mater. Sci., 42(17), 7478-7487. https://doi.org/10.1007/S10853-006-1462-0/TABLES/6.
- Dong, W., Li, W., Guo, Y., Qu, F., Wang, K. and Sheng, D. (2022), "Piezoresistive performance of hydrophobic cement-based sensors under moisture and chloride-rich environments", Cement Concr. Compos., 126, 104379. https://doi.org/10.1016/J.CEMCONCOMP.2021.104379.
- Dongxu, L., Xuequan, W., Jinlin, S. and Yujiang, W. (2000), "The influence of compound admixtures on the properties of high-content slag cement", Cement Concr. Compos., 30(1), 45-50. https://doi.org/10.1016/S0008-8846(99)00210-0.
- Drexler, K.E. (1981), "Molecular engineering: An approach to the development of general capabilities for molecular manipulation", Proceedings of the National Academy of Sciences of the United States of America., 78(9), 5275. https://doi.org/10.1073/PNAS.78.9.5275.
- Erdogdu, S., Kandil, U., Nayir, S., Erdogdu, S., Kandil, U. and Nayir, S. (2019), "Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete", Adv. Concr. Const., 8(2), 139. https://doi.org/10.12989/ACC.2019.8.2.139.
- Escalante-Garcia, J.I., Espinoza-Perez, L.J., Gorokhovsky, A. and Gomez-Zamorano, L.Y. (2009), "Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement", Constr. Build. Mater., 23(7), 2511-2517. https://doi.org/10.1016/J.CONBUILDMAT.2009.02.002.
- Escalante-Garcia, J.I. and Sharp, J.H. (2004), "The chemical composition and microstructure of hydration products in blended cements", Cement Concr. Compos., 26(8), 967-976. https://doi.org/10.1016/J.CEMCONCOMP.2004.02.036.
- Fattahi, A.M., Safaei, B., Qin, Z., Chu, F., (2021), "Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites", Steel Compos. Struct., 38(2), 177. https://doi.org/10.12989/SCS.2021.38.2.177
- Fu, Q., Zhang, Z., Zhao, X., Xu, W. and Niu, D. (2022), "Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: A review", J. Build. Eng., 50, 104220. https://doi.org/10.1016/J.JOBE.2022.104220.
- Galetakis, M. and Raka, S. (2004), "Utilization of limestone dust for artificial stone production: An experimental approach", Miner. Eng., 17(2), 355-357. https://doi.org/10.1016/J.MINENG.2003.10.031.
- Garrault, S. and Nonat, A. (2001), "Hydrated layer formation on tricalcium and dicalcium silicate surfaces: Experimental study and numerical simulations", Langmuir., 17(26), 8131-8138. https://doi.org/10.1021/LA011201Z.
- Hoy, R.F., Baird, T., Hammerschlag, G., Hart, D., Johnson, A.R., King, P., and Yates, D.H. (2018), "Artificial stone-associated silicosis: A rapidly emerging occupational lung disease", Occup. Environ. Med., 75(1), 3-5. https://doi.org/10.1136/OEMED-2017-104428.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature ., 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Jafarzadeh, S. and Jafari, S.M. (2020), "Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials", Crit. Rev. Food Sci. Nutr., 1-19. https://doi.org/10.1080/10408398.2020.1783200.
- Jamkhande, P.G., Ghule, N.W., Bamer, A.H. and Kalaskar, M.G. (2019), "Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications", J. Drug Deliv. Sci. Technol., 53, 101174. https://doi.org/10.1016/J.JDDST.2019.101174.
- Jo, Y.K. (2020), "Adhesion in tension of polymer cement mortar by curing conditions using polymer dispersions as cement modifier", Constr. Build. Mater., 242, 118134. https://doi.org/10.1016/J.CONBUILDMAT.2020.118134.
- Kaloop, M.R., Elrahman, M.A., Hu, J.W., Kaloop, M.R., Elrahman, M.A. and Hu, J.W. (2022), "Nondestructive tests for defections detection of nanoparticles in cement-based materials: A review", Adv. Nano Res., 12(1), 1. https://doi.org/10.12989/ANR.2022.12.1.001.
- Kamasamudram, K.S., Ashraf, W. and Landis, E.N. (2020), "Cellulose nanocomposites for performance enhancement of ordinary portland cement-based materials", J. SAGE., 2675(9), 11-20. https://doi.org/10.1177/0361198120958421.
- Kawashima, S., Hou, P., Corr, D.J. and Shah, S.P. (2013), "Modification of cement-based materials with nanoparticles", Cement Concr. Compos., 36(1), 8-15. https://doi.org/10.1016/J.CEMCONCOMP.2012.06.012.
- Kim, J.H., Beacraft, M. and Shah, S.P. (2010), "Effect of mineral admixtures on formwork pressure of self-consolidating concrete", Cement Concr. Compos., 32(9), 665-671. https://doi.org/10.1016/J.CEMCONCOMP.2010.07.018.
- Kim, M.S., Jun, Y., Lee, C. and Oh, J.E. (2013), "Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag", Cement Concr. Compos., 54, 208-214. https://doi.org/10.1016/J.CEMCONRES.2013.09.011.
- Krajci, L., Kuliffayova, M. and Janotka, I. (2013), "Ternary cement composites with metakaolin sand and calcined clayey diatomite", Procedia Eng., 65, 7-13. https://doi.org/10.1016/J.PROENG.2013.09.003.
- Lee, M.Y., Ko, C.H., Chang, F.C., Lo, S.L., Lin, J.D., Shan, M.Y. and Lee, J.C. (2008), "Artificial stone slab production using waste glass, stone fragments and vacuum vibratory compaction", Cement Concr. Compos., 30(7), 583-587. https://doi.org/10.1016/J.CEMCONCOMP.2008.03.004.
- Li, Q., Xie, B., Sahmani, S. and Safaei, B. (2020), "Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction", J. Brazil. Soc. Mech. Sci. Eng., 42(5), 1-18. https://doi.org/10.1007/S40430-020-02317-2/FIGURES/6
- Li, G. (2004), "Properties of high-volume fly ash concrete incorporating nano-SiO2", Cement Concr. Compos., 34(6), 1043-1049. https://doi.org/10.1016/J.CEMCONRES.2003.11.013.
- Li, H., Wu, T., Gao, Z., Wang, X., Ma, H., Han, Q. and Qin, Z. (2020), "An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites", Int. J. Mech. Sci., 184, 105818. https://doi.org/10.1016/J.IJMECSCI.2020.105818.
- Liu, H., Li, Q., Ni, S., Wang, L., Yue, G. and Guo, Y. (2022), "Effect of nano-silica dispersed at different temperatures on the properties of cement-based materials", J. Build. Eng., 46, 103750. https://doi.org/10.1016/J.JOBE.2021.103750.
- Mohammadi, M., Khodamorady, M., Tahmasbi, B., Bahrami, K. and Ghorbani-Choghamarani, A. (2021), "Boehmite nano-particles as versatile support for organic-inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis", J. Ind. Eng. Chem., 97, 1-78. https://doi.org/10.1016/J.JIEC.2021.02.001.
- Onaizi, A.M., Huseien, G.F., Lim, N.H.A.S., Amran, M. and Samadi, M. (2021), "Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review", Constr. Build. Mater., 306, 124850. https://doi.org/10.1016/J.CONBUILDMAT.2021.124850.
- Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nano-composite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/J.TWS.2021.108127
- Pan, S., Feng, J., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2022), "A comparative experimental study on damping properties of epoxy nanocomposite beams reinforced with carbon nanotubes and graphene nanoplatelets", Nanotechnol. Rev, 11(1), 1658-1669. https://doi.org/10.1515/NTREV-2022-0107
- Razeghi, M. (2018), Fundamentals of solid state engineering, Fundamentals of Solid State Engineering, Springer International Publishing. https://doi.org/10.1007/978-3-319-75708-7.
- Safaei, B. (2021), "Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces", Eur. Phys. J. Plus, 136(6), 1-16. https://doi.org/10.1140/EPJP/S13360-021-01632-4.
- Safaei, B., Davodian, E., Fattahi, A.M. and Asmael, M. (2021), "Calcium carbonate nanoparticles effects on cement plast properties", Microsyst. Technol., 27(8), 3059-3076. https://doi.org/10.1007/S00542-020-05136-6.
- Safaei, B., Onyibo, E.C. and Hurdoganoglu, D. (2022), "Effect of static and harmonic loading on the honeycomb sandwich beam by using finite element method", Facta Univ. Series Mech. Eng., 20(2), 279-306 https://doi.org/10.22190/FUME220201009S
- Sajedi, F. and Razak, H.A. (2011), "Comparison of different methods for activation of ordinary Portland cement-slag mortars", Constr. Build. Mater., 25(1), 30-38. https://doi.org/10.1016/J.CONBUILDMAT.2010.06.060.
- Shao, L., Feng, P., Zuo, W., Wang, H., Geng, Z., Liu, Q., and Liu, Z. (2022), "A novel method for improving the printability of cement-based materials: Controlling the releasing of capsules containing chemical admixtures", Cement Concr. Compos., 128, 04456. https://doi.org/10.1016/J.CEMCONCOMP.2022.104456.
- Shi, T., Lan, Y., Hu, Z., Wang, H., Xu, J. and Zheng, B. (2022), "Tensile and fracture properties of silicon carbide whisker-modified cement-based materials", Int. J. Concr. Struct. Mater., 16(1), 1-13. https://doi.org/10.1186/S40069-021-00495-4/FIGURES/16.
- Voigt, T., Mbele, J.-J., and Shah, S. P. (2010), "Using fly ash, clay, and fibers for simultaneous improvement of concrete green strength and consolidatability for slip-form pavement", J. Mater. Civil Eng., 22(2), 196-206. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:2(196).
- Wang, D., Xiao, J. and Duan, Z. (2022), "Strategies to accelerate CO2 sequestration of cement-based materials and their application prospects", Constr. Build. Mater, 314, 125646. https://doi.org/10.1016/J.CONBUILDMAT.2021.125646
- Wang, Y., Ermilov, V., Strigin, S. and Safaei, B. (2021), "Multilevel modeling of the mechanical properties of graphene nanocomposites/polymer composites", Microsyst. Technol., 27(12), 4241-4251. https://doi.org/10.1007/S00542-021-05218-Z/FIGURES/8
- Xue, C., Tapas, M.J. and Sirivivatnanon, V. (2022), "Cracking and stimulated autogenous self-healing on the sustainability of cement-based materials: a review", J. Sust. Cement Based Mater., 1-23. https://doi.org/10.1080/21650373.2022.2031334.
- Yang, H., Monasterio, M., Zheng, D., Cui, H., Tang, W., Bao, X. and Chen, X. (2021), "Effects of nano silica on the properties of cement-based materials: A comprehensive review", Constr. Build. Mater., 282, 122715. https://doi.org/10.1016/J.CONBUILDMAT.2021.122715.
- Yi, H., Sahmani, S. and Safaei, B. (2020), "On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions", Arch. Civil Mech. Eng., 20(2), 1-23. https://doi.org/10.1007/S43452-020-00047-9/FIGURES/7
- Yin, B., Wu, C., Hou, D., Li, S., Jin, Z., Wang, M. and Wang, X. (2021), "Research and application progress of nano-modified coating in improving the durability of cement-based materials", Prog. Organic Coat., 161, 106529. https://doi.org/10.1016/J.PORGCOAT.2021.106529.
- Zhang, A., Yang, W., Ge, Y., Du, Y. and Liu, P. (2021), "Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study", J. Build. Eng., 34, 101936. https://doi.org/10.1016/J.JOBE.2020.101936.
- Zhang, Y., Zhang, W., Zhang, Y., Zhang, Y., Zhang, W. and Zhang, Y. (2019), "Combined effect of fine aggregate and silica fume on properties of Portland cement pervious concrete", Adv. Concr. Const., 8(1), 47. https://doi.org/10.12989/ACC.2019.8.1.047.
- Zhu, J., Zhu, L., Feng, C., Guan, X., Sun, Y. and Zhang, W. (2021), "Effect of Nano-Si3N4 on the Mechanical Properties of Cement-Based Materials", Crystals., 11(12), 1556. https://doi.org/10.3390/CRYST11121556.