과제정보
This research was funded by the Institutional Fund Projects under grant no. IFPIP (10-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR in Jeddah, Saudi Arabia.
참고문헌
- Abdelrahman, A.A. and Eltaher, M.A. (2022), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 38, 2385-2411. https://doi.org/10.1007/s00366-020-01211-8
- Abdelrahman, A.A. and El-Shafei, A.G. (2020), "Modeling and analysis of the transient response of viscoelastic solids", Wave Random Complex Med., 1-31. https://doi.org/10.1080/17455030.2020.1714790
- Abdelrahman, A.A. and Mahmoud, F.F. (2016), "Analysis of nanocontact problems of layered viscoelastic solids with surface energy effects under different loading patterns", Acta Mechanica, 227(2), 527-548. https://doi.org/10.1007/s00707-015-1473-5
- Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2016), "Influence of surface energy on the nanoindentation response of elastically-layered viscoelastic materials", Int. J. Mech. Mater. Design, 12(2), 193-209. https://doi.org/10.1007/s10999-015-9301-6
- Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
- Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515
- Abdelrahman, A.A., Mohamed, N.A. andEltaher, M.A. (2022), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 38, 415-435. https://doi.org/10.1007/s00366-020-01149-x
- Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2022), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 38, 255-276. https://doi.org/10.1007/s00366-020-01146-0
- Adhikari, S., Karlicic, D. and Liu, X. (2021), "Dynamic stiffness of nonlocal damped nano-beams on elastic foundation", Eur. J. Mech. A Solids, 86, 104144. https://doi.org/10.1016/j.euromechsol.2020.104144
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. andEltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3
- Al-Furjan, M.S.H., Habibi, M., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8
- Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022a), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117
- Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022b), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 281413-1426. https://doi.org/10.1016/j.istruc.2020.09.055
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
- Almitani, K.H., Abdelrahman, A.A. andEltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
- Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
- Anh, N.D. and Hieu, D.V. (2022), "Nonlinear random vibration of functionally graded nanobeams based on the nonlocal strain gradient theory", Acta Mechanica, 1-16. https://doi.org/10.1007/s00707-022-03199-2
- Ansari, R., Oskouie, M.F., Gholami, R. (2016), "Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory", Physica E, 75, 266-271. http://doi.org/10.1016/j.physe.2015.09.022
- Ansari, R., Oskouie, M.F., Sadeghi, F. and Bazdid-Vahdati, M. (2015), "Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory", Physica E, 74, 318-327. http://dx.doi.org/10.1016/j.physe.2015.07.013
- Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010a), "The response of viscoelastic-frictionless bodies under normal impact", Int. J. Mech. Sci., 52(3), 446-454. https://doi.org/10.1016/j.ijmecsci.2009.11.005
- Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010b), "Modeling of viscoelastic contact-impact problems", Appl. Math. Modell., 34(9), 2336-2352. https://doi.org/10.1016/j.apm.2009.11.001
- Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129-1140. https://doi.org/10.1007/s12206-011-0302-6
- Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2
- Attia, M.A. and Abdel Rahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
- Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643
- Bendaida, M., Bousahla, A. A., Mouffoki, A., Heireche, Bourada, F., Tounsi, A., Benachour, A., Tounsi, A. and Hussain, M. (2022), "Dynamic properties of nonlocal temperaturedependent FG nanobeams under various thermal environments", Transp. Porous Med., 142(1), 187-208. https://doi.org/10.1007/s11242-021-01666-3
- Bouafia, H., Chikh, A., Bousahla, A. A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.239
- Bendali, A., Labedan, R., Domingue, F. and Nerguizian, V. (2006), "Holes effects on RF MEMS parallel membranes capacitors", Proceeding of the 2006 Canadian Conference on Electrical and Computer Engineering, 2140-2143, IEEE.
- Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M. E. A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014
- Eltaher, M.A. and Abdelrahman, A.A., (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143
- Eltaher, M.A. and Mohamed, N.A. (2020), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018a), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51. http://doi.org/10.12989/anr.2016.4.1.051
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020b), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. andAlshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
- Eltaher, M.A., Abdelmoteleb, H.E., Daikh, A.A. and Abdelrahman, A.A. (2021a), "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Steel Compos. Struct., 41(4), 505-520. https://doi.org/10.12989/scs.2021.41.4.505
- Eltaher, M. A., Shanab, R.A., Mohamed, N.A, (2022), "Analytical solution of free vibration of viscoelastic perforated nanobeam", Arch. Appl. Mech., 1-23. https://doi.org/10.1007/s00419-022-02184-4
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7
- Esen, I., O zarpa, C. andEltaher, M. A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
- Esen, I., Abdelrahman, A.A. andEltaher, M.A. (2021b), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9
- Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405
- Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(2), 203-218. https://doi.org/10.12989/anr.2021.11.2.203
- Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2020), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput., 38, 209-230. https://doi.org/10.1007/s00366-020-01063-2
- Hosseini, S.A., Rahmani, O. and Bayat, S. (2021), "Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method", Mech. Based Des. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2021.1943671
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7
- Jalaei, M.H. and Thai, H.T. (2019), "Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory", Compos. Part B Eng., 175, 107164. https://doi.org/10.1016/j.compositesb.2019.107164
- Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Physica B, 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049
- Jalaei, M.H. and Civalek, Ӧ. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013
- Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J. Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002
- Jalaei, M.H., Thai, H.T. and Civalek, Ӧ. (2022). "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
- Khadir, A.I., Daikh A.A, Eltaher, M.A., (2021), "Novel fourunknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
- Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001
- Lei, Y., Adhikari, S. and Friswell, M. I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020
- Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuat. B Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
- Malikan, M. and Eremeyev, V.A. (2020), "On the dynamics of a visco-piezo-flexoelectric nanobeam", Symmetry, 12(4), 643. https://doi.org/10.3390/sym12040643
- Malikan, M. and Sadraee Far, M.N. (2018), "Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory", J. Appl. Comput. Mech., 4(3), 147-160. https://doi.org/10.22055/JACM.2017.22661.1138
- Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A, and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293
- Mohamed, S.A., Gamal, L., Shanab, R.A. and Bakry, A.E. (2022), "A comparison of FEM and DIQM in investigating the nonlinear free vibration of axially functionally graded tapered microbeams with general boundary conditions", Compos. Struct., 282, 115027. https://doi.org/10.1016/j.compstruct.2021.115027
- Mohamed, S.A., Shanab, R.A. andSeddek, L.F. (2016), "Vibration analysis of Euler-Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method", Appl. Math. Modell., 40(3), 2396-2406. https://doi.org/10.1016/j.apm.2015.08.019
- Rahmani, A., Faroughi, S., Sari, M. and Abdelkefi, A. (2022). "Selection of size dependency theory effects on the wave's dispersions of magneto-electro-thermo-elastic nano-beam resting n visco-elastic foundation", Eur. J. Mech. A Solids, 104620. https://doi.org/10.1016/j.euromechsol.2022.104620
- Roudbari, M.A., Jorshari, T.D., Lu, C., Ansari, R., Kouzani, A.Z. and Amabili, M. (2022), "A review of size-dependent continuum mechanics models for micro-and nano-structures", Thin Wall. Struct., 170, 108562. https://doi.org/10.1016/j.tws.2021.108562
- Sahmani, S., Aghdam, M.M., Rabczuk, T., (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory". Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082
- Sakiyama, T., Matsuda, H. and Morita, C. (1997), "Free vibration analysis of sandwich arches with elastic or viscoelastic core and various kinds of axis-shape and boundary conditions", J. Sound Vib., 203(3), 505-522. https://doi.org/10.1006/jsvi.1996.0900
- Shanab, R.A. and Attia, M.A. (2020), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 1-44. https://doi.org/10.1007/s00366-020-01205-6
- Shanab, R.A. and Attia, M.A. (2021), "On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories", Wave Random Complex Med., 1-47. https://doi.org/10.1080/17455030.2021.1884770
- Shanab, R.A., Attia, M.A. and Mohamed, S.A. (2017), "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Int. J. Mech. Sci., 131, 908-923. https://doi.org/10.1016/j.ijmecsci.2017.07.055
- Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049
- She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 1-9. https://doi.org/10.1140/epjp/i2018-12196-5
- Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2017.03.006
- Tang, H., Li, L., Hu, Y., Meng, W. and Duan, K. (2019), "Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects", Thin Wall. Struct., 137, 377-391. https://doi.org/10.1016/j.tws.2019.01.027
- Wu, P., Yang, Z., Huang, X., Liu, W. and Fang, H. (2020), "Exact solutions for multilayer functionally graded beams bonded by viscoelastic interlayer considering memory effect", Compos. Struct., 249, 112492. https://doi.org/10.1016/j.compstruct.2020.112492
- Wu, P., Wang, M. and Fang, H. (2021), "Exact solution for infinite multilayer pipe bonded by viscoelastic adhesive under nonuniform load". Compos. Struct., 259, 113240. https://doi.org/10.1016/j.compstruct.2020.113240
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Yayli, M.O . (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube". Acta Physica Polonica A, 127(3), 678-683. https://doi.org/10.12693/APhysPolA.127.678
- Yayli, M.O . (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257
- Yayli, M.O . (2018a), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206. https://doi.org/10.1049/mnl.2017.0463
- Yayli, M.O . (2018b), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181
- Yayli, M.O . (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751
- Yayli, M.O . (2019a), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4
- Yayli, M.O . (2019b), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428
- Yayli, M.O . (2020), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26(8), 2661-2671. https://doi.org/10.1007/s00542-020-04808-7
- Yi, Z.P., Wang, L.H. and Zhao, Y.Y. (2009), "Nonlinear dynamic behaviors of viscoelastic shallow arches", Appl. Math. Mech., 30(6), 771-777. https://doi.org/10.1007/s10483-009-0611-y
- Yu, F., Guan, B., Wu, P., Fang, H. and Gu, Z. (2022), "Long-term behavior of multilayered angle-ply plate structures with viscoelastic interlayer by state space method", Thin Wall. Struct., 171, 108766. https://doi.org/10.1016/j.tws.2021.108766
- Zhen, Y.X., Wen, S.L. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E, 105, 116-124. https://doi.org/10.1016/j.physe.2018.09.005.