DOI QR코드

DOI QR Code

Dynamic characteristics of viscoelastic nanobeams including cutouts

  • Rabab A., Shanab (Engineering Mathematics Department, Faculty of Engineering, Zagazig University) ;
  • Norhan A., Mohamed (Engineering Mathematics Department, Faculty of Engineering, Zagazig University) ;
  • Mohamed A., Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University) ;
  • Alaa A., Abdelrahman (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
  • Received : 2022.01.19
  • Accepted : 2022.06.07
  • Published : 2023.01.25

Abstract

This paper aimed to investigate the nonclassical size dependent free vibration behavior of regularly squared cutout viscoelastic nanobeams. The nonlocal strain gradient elasticity theory is modified and adopted to incorporate the viscoelasticity effect. The Kelvin Voigt viscoelastic model is adopted to model the linear viscoelastic constitutive response. To explore the influence of shear deformation effect due to cutout, both Euler Bernoulli and Timoshenko beams theories are considered. The Hamilton principle is utilized to derive the dynamic equations of motion incorporating viscoelasticity and size dependent effects. Closed form solutions for the resonant frequencies for both perforated Euler Bernoulli nanobeams (PEBNB) and perforated Timoshenko nanobeams (PTNB) are derived considering different boundary conditions. The developed procedure is verified by comparing the obtained results with the available results in the literature. Parametric studies are conducted to show the influence of the material damping, the perforation, the material and the geometrical parameters as well as the boundary and loading conditions on the dynamic behavior of viscoelastic perforated nanobeams. The proposed procedure and the obtained results are supportive in the analysis and design of perforated viscoelastic NEMS structures.

Keywords

Acknowledgement

This research was funded by the Institutional Fund Projects under grant no. IFPIP (10-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR in Jeddah, Saudi Arabia.

References

  1. Abdelrahman, A.A. and Eltaher, M.A. (2022), "On bending and buckling responses of perforated nanobeams including surface energy for different beams theories", Eng. Comput., 38, 2385-2411. https://doi.org/10.1007/s00366-020-01211-8
  2. Abdelrahman, A.A. and El-Shafei, A.G. (2020), "Modeling and analysis of the transient response of viscoelastic solids", Wave Random Complex Med., 1-31. https://doi.org/10.1080/17455030.2020.1714790
  3. Abdelrahman, A.A. and Mahmoud, F.F. (2016), "Analysis of nanocontact problems of layered viscoelastic solids with surface energy effects under different loading patterns", Acta Mechanica, 227(2), 527-548. https://doi.org/10.1007/s00707-015-1473-5
  4. Abdelrahman, A.A., El-Shafei, A.G. and Mahmoud, F.F. (2016), "Influence of surface energy on the nanoindentation response of elastically-layered viscoelastic materials", Int. J. Mech. Mater. Design, 12(2), 193-209. https://doi.org/10.1007/s10999-015-9301-6
  5. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
  6. Abdelrahman, A.A., Esen, I., O zarpa, C. and Eltaher, M.A. (2021a), "Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory", Appl. Math. Modell., 96, 215-235. https://doi.org/10.1016/j.apm.2021.03.008
  7. Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M.A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515
  8. Abdelrahman, A.A., Mohamed, N.A. andEltaher, M.A. (2022), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 38, 415-435. https://doi.org/10.1007/s00366-020-01149-x
  9. Abo-Bakr, R.M., Eltaher, M.A. and Attia, M.A. (2022), "Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects", Eng. Comput., 38, 255-276. https://doi.org/10.1007/s00366-020-01146-0
  10. Adhikari, S., Karlicic, D. and Liu, X. (2021), "Dynamic stiffness of nonlocal damped nano-beams on elastic foundation", Eur. J. Mech. A Solids, 86, 104144. https://doi.org/10.1016/j.euromechsol.2020.104144
  11. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277
  12. Akbas, S.D., Fageehi, Y.A., Assie, A.E. andEltaher, M.A. (2022), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. Comput., 38, 365-377. https://doi.org/10.1007/s00366-020-01070-3
  13. Al-Furjan, M.S.H., Habibi, M., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8
  14. Alazwari, M.A., Daikh, A.A. and Eltaher, M.A. (2022a), "Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates", Adv. Nano Res., 12(2), 117-137. https://doi.org/10.12989/anr.2022.12.2.117
  15. Alazwari, M.A., Esen, I., Abdelrahman, A.A., Abdraboh, A.M. and Eltaher, M.A. (2022b), "Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermomagnetic fields and moving load", Adv. Nano Res., 12(3), 231-251. https://doi.org/10.12989/anr.2022.12.3.231
  16. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 281413-1426. https://doi.org/10.1016/j.istruc.2020.09.055
  17. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
  18. Almitani, K.H., Abdelrahman, A.A. andEltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
  19. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
  20. Anh, N.D. and Hieu, D.V. (2022), "Nonlinear random vibration of functionally graded nanobeams based on the nonlocal strain gradient theory", Acta Mechanica, 1-16. https://doi.org/10.1007/s00707-022-03199-2
  21. Ansari, R., Oskouie, M.F., Gholami, R. (2016), "Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory", Physica E, 75, 266-271. http://doi.org/10.1016/j.physe.2015.09.022
  22. Ansari, R., Oskouie, M.F., Sadeghi, F. and Bazdid-Vahdati, M. (2015), "Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory", Physica E, 74, 318-327. http://dx.doi.org/10.1016/j.physe.2015.07.013
  23. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010a), "The response of viscoelastic-frictionless bodies under normal impact", Int. J. Mech. Sci., 52(3), 446-454. https://doi.org/10.1016/j.ijmecsci.2009.11.005
  24. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2010b), "Modeling of viscoelastic contact-impact problems", Appl. Math. Modell., 34(9), 2336-2352. https://doi.org/10.1016/j.apm.2009.11.001
  25. Assie, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Behavior of a viscoelastic composite plates under transient load", J. Mech. Sci. Technol., 25(5), 1129-1140. https://doi.org/10.1007/s12206-011-0302-6
  26. Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Eur. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2
  27. Attia, M.A. and Abdel Rahman, A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  28. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643
  29. Bendaida, M., Bousahla, A. A., Mouffoki, A., Heireche, Bourada, F., Tounsi, A., Benachour, A., Tounsi, A. and Hussain, M. (2022), "Dynamic properties of nonlocal temperaturedependent FG nanobeams under various thermal environments", Transp. Porous Med., 142(1), 187-208. https://doi.org/10.1007/s11242-021-01666-3
  30. Bouafia, H., Chikh, A., Bousahla, A. A., Bourada, F., Heireche, H., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M. and Hussain, M. (2021), "Natural frequencies of FGM nanoplates embedded in an elastic medium", Adv. Nano Res., 11(3), 239-249. https://doi.org/10.12989/anr.2021.11.3.239
  31. Bendali, A., Labedan, R., Domingue, F. and Nerguizian, V. (2006), "Holes effects on RF MEMS parallel membranes capacitors", Proceeding of the 2006 Canadian Conference on Electrical and Computer Engineering, 2140-2143, IEEE.
  32. Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M. E. A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014
  33. Eltaher, M.A. and Abdelrahman, A.A., (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143
  34. Eltaher, M.A. and Mohamed, N.A. (2020), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501
  35. Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018a), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
  36. Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
  37. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51. http://doi.org/10.12989/anr.2016.4.1.051
  38. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020b), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141
  39. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. andAlshorbagy, A.E. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
  40. Eltaher, M.A., Abdelmoteleb, H.E., Daikh, A.A. and Abdelrahman, A.A. (2021a), "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Steel Compos. Struct., 41(4), 505-520. https://doi.org/10.12989/scs.2021.41.4.505
  41. Eltaher, M. A., Shanab, R.A., Mohamed, N.A, (2022), "Analytical solution of free vibration of viscoelastic perforated nanobeam", Arch. Appl. Mech., 1-23. https://doi.org/10.1007/s00419-022-02184-4
  42. Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Dynamics analysis of Timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7
  43. Esen, I., O zarpa, C. andEltaher, M. A. (2021a), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552. https://doi.org/10.1016/j.compstruct.2021.113552
  44. Esen, I., Abdelrahman, A.A. andEltaher, M.A. (2021b), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17, 721-742. https://doi.org/10.1007/s10999-021-09555-9
  45. Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405
  46. Guo, X., Liu, Y. and Wang, G. (2021), "Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization", Adv. Nano Res., 11(2), 203-218. https://doi.org/10.12989/anr.2021.11.2.203
  47. Hamed, M.A., Mohamed, N.A. and Eltaher, M.A. (2020), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput., 38, 209-230. https://doi.org/10.1007/s00366-020-01063-2
  48. Hosseini, S.A., Rahmani, O. and Bayat, S. (2021), "Thermal effect on forced vibration analysis of FG nanobeam subjected to moving load by Laplace transform method", Mech. Based Des. Struct. Mach., 1-20. https://doi.org/10.1080/15397734.2021.1943671
  49. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7
  50. Jalaei, M.H. and Thai, H.T. (2019), "Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory", Compos. Part B Eng., 175, 107164. https://doi.org/10.1016/j.compositesb.2019.107164
  51. Jalaei, M.H. and Arani, A.G. (2018), "Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation", Physica B, 530, 222-235. https://doi.org/10.1016/j.physb.2017.11.049
  52. Jalaei, M.H. and Civalek, Ӧ. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013
  53. Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J. Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002
  54. Jalaei, M.H., Thai, H.T. and Civalek, Ӧ. (2022). "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629
  55. Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
  56. Khadir, A.I., Daikh A.A, Eltaher, M.A., (2021), "Novel fourunknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates", Adv. Nano Res., 11(6), 621-640. https://doi.org/10.12989/anr.2021.11.6.621
  57. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001
  58. Lei, Y., Adhikari, S. and Friswell, M. I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004
  59. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  60. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  61. Liang, X., Hu, S. and Shen, S. (2014), "Effects of surface and flexoelectricity on a piezoelectric nanobeam", Smart Mater. Struct., 23(3), 035020. https://doi.org/10.1088/0964-1726/23/3/035020
  62. Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006
  63. Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
  64. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
  65. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuat. B Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
  66. Malikan, M. and Eremeyev, V.A. (2020), "On the dynamics of a visco-piezo-flexoelectric nanobeam", Symmetry, 12(4), 643. https://doi.org/10.3390/sym12040643
  67. Malikan, M. and Sadraee Far, M.N. (2018), "Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory", J. Appl. Comput. Mech., 4(3), 147-160. https://doi.org/10.22055/JACM.2017.22661.1138
  68. Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., 21(4), 778-786. https://doi.org/10.1016/j.jestch.2018.06.001 
  69. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A, and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293
  70. Mohamed, S.A., Gamal, L., Shanab, R.A. and Bakry, A.E. (2022), "A comparison of FEM and DIQM in investigating the nonlinear free vibration of axially functionally graded tapered microbeams with general boundary conditions", Compos. Struct., 282, 115027. https://doi.org/10.1016/j.compstruct.2021.115027
  71. Mohamed, S.A., Shanab, R.A. andSeddek, L.F. (2016), "Vibration analysis of Euler-Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method", Appl. Math. Modell., 40(3), 2396-2406. https://doi.org/10.1016/j.apm.2015.08.019
  72. Rahmani, A., Faroughi, S., Sari, M. and Abdelkefi, A. (2022). "Selection of size dependency theory effects on the wave's dispersions of magneto-electro-thermo-elastic nano-beam resting n visco-elastic foundation", Eur. J. Mech. A Solids, 104620. https://doi.org/10.1016/j.euromechsol.2022.104620
  73. Roudbari, M.A., Jorshari, T.D., Lu, C., Ansari, R., Kouzani, A.Z. and Amabili, M. (2022), "A review of size-dependent continuum mechanics models for micro-and nano-structures", Thin Wall. Struct., 170, 108562. https://doi.org/10.1016/j.tws.2021.108562
  74. Sahmani, S., Aghdam, M.M., Rabczuk, T., (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory". Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082
  75. Sakiyama, T., Matsuda, H. and Morita, C. (1997), "Free vibration analysis of sandwich arches with elastic or viscoelastic core and various kinds of axis-shape and boundary conditions", J. Sound Vib., 203(3), 505-522. https://doi.org/10.1006/jsvi.1996.0900
  76. Shanab, R.A. and Attia, M.A. (2020), "Semi-analytical solutions for static and dynamic responses of bi-directional functionally graded nonuniform nanobeams with surface energy effect", Eng. Comput., 1-44. https://doi.org/10.1007/s00366-020-01205-6
  77. Shanab, R.A. and Attia, M.A. (2021), "On bending, buckling and free vibration analysis of 2D-FG tapered Timoshenko nanobeams based on modified couple stress and surface energy theories", Wave Random Complex Med., 1-47. https://doi.org/10.1080/17455030.2021.1884770
  78. Shanab, R.A., Attia, M.A. and Mohamed, S.A. (2017), "Nonlinear analysis of functionally graded nanoscale beams incorporating the surface energy and microstructure effects", Int. J. Mech. Sci., 131, 908-923. https://doi.org/10.1016/j.ijmecsci.2017.07.055
  79. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049
  80. She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 1-9. https://doi.org/10.1140/epjp/i2018-12196-5
  81. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2017.03.006
  82. Tang, H., Li, L., Hu, Y., Meng, W. and Duan, K. (2019), "Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects", Thin Wall. Struct., 137, 377-391. https://doi.org/10.1016/j.tws.2019.01.027
  83. Wu, P., Yang, Z., Huang, X., Liu, W. and Fang, H. (2020), "Exact solutions for multilayer functionally graded beams bonded by viscoelastic interlayer considering memory effect", Compos. Struct., 249, 112492. https://doi.org/10.1016/j.compstruct.2020.112492
  84. Wu, P., Wang, M. and Fang, H. (2021), "Exact solution for infinite multilayer pipe bonded by viscoelastic adhesive under nonuniform load". Compos. Struct., 259, 113240. https://doi.org/10.1016/j.compstruct.2020.113240
  85. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  86. Yayli, M.O . (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube". Acta Physica Polonica A, 127(3), 678-683. https://doi.org/10.12693/APhysPolA.127.678
  87. Yayli, M.O . (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257
  88. Yayli, M.O . (2018a), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206. https://doi.org/10.1049/mnl.2017.0463
  89. Yayli, M.O . (2018b), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181
  90. Yayli, M.O . (2018c), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-599. https://doi.org/10.1049/mnl.2017.0751
  91. Yayli, M.O . (2019a), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25(10), 3723-3734. https://doi.org/10.1007/s00542-019-04307-4
  92. Yayli, M.O . (2019b), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428
  93. Yayli, M.O . (2020), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26(8), 2661-2671. https://doi.org/10.1007/s00542-020-04808-7
  94. Yi, Z.P., Wang, L.H. and Zhao, Y.Y. (2009), "Nonlinear dynamic behaviors of viscoelastic shallow arches", Appl. Math. Mech., 30(6), 771-777. https://doi.org/10.1007/s10483-009-0611-y
  95. Yu, F., Guan, B., Wu, P., Fang, H. and Gu, Z. (2022), "Long-term behavior of multilayered angle-ply plate structures with viscoelastic interlayer by state space method", Thin Wall. Struct., 171, 108766. https://doi.org/10.1016/j.tws.2021.108766
  96. Zhen, Y.X., Wen, S.L. and Tang, Y. (2019), "Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model", Physica E, 105, 116-124. https://doi.org/10.1016/j.physe.2018.09.005.