DOI QR코드

DOI QR Code

Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes

  • Arjun Siddharth, Mangalasseri (Department of Aerospace Engineering, Indian Institute of Science (IISc)) ;
  • Vinyas, Mahesh (Department of Engineering, City, University of London) ;
  • Sriram, Mukunda (Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology) ;
  • Vishwas, Mahesh (Department of Aerospace Engineering, Indian Institute of Science (IISc)) ;
  • Sathiskumar A, Ponnusami (Department of Engineering, City, University of London) ;
  • Dineshkumar, Harursampath (Department of Aerospace Engineering, Indian Institute of Science (IISc)) ;
  • Abdelouahed, Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2022.01.13
  • 심사 : 2022.05.15
  • 발행 : 2023.01.25

초록

This article investigates the energy harvesting characteristics of a magneto-electro-elastic (MEE) cantilever beam reinforced with carbon nanotubes (CNT) under transverse vibration. To this end, the well-known lumped parameter model is used to represent the coupled multiphysics problem mathematically. The proposed system consists of the MEE-CNT layer on top and an inactive substrate layer at the bottom. The substrate is considered to be made of either an isotropic or composite material. Basic laws such as Gauss's Law, Newton's Law and Faraday's Law are used to arrive at the governing equations. Surface electrodes across the beam are used to harvest the electric potential produced, together with a wound coil, for the generated magnetic potential. The influence of various distributions of the CNT and its volume fraction, substrate material, length-to-thickness ratio, and thickness ratio of substrate to MEE layer on the energy harvesting behaviour is thoroughly discussed. Further, the effect of external resistances and changes in substrate material on the response is analysed and reported. The article aims to explore smart material-based energy harvesting systems, focusing on their behaviour when reinforced with carbon nanotubes. The results of this study may lead to an improved understanding of the design and analysis of CNT-based smart structures.

키워드

과제정보

The financial support by The Royal Society of London through Newton International Fellowship (NIF⧵R1⧵212432) is sincerely acknowledged by the authors Vinyas Mahesh and Sathiskumar A Ponnusami. The financial support by Science and Engineering for Research Excellence (TAR/2021/000016) is sincerely acknowledged by the authors Vishwas Mahesh and Dineshkumar Harursampath.

참고문헌

  1. Allahkarami, F. (2020), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01169-7
  2. Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electro-elastic beam", J. Sound Vib., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
  3. Arani, A.G., Kiani, F. and Afshari, H. (2021), "Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels", J. Sandw. Struct. Mater., 23(1), 255-278. https://doi.org/10.1177%2F1099636219830787 https://doi.org/10.1177%2F1099636219830787
  4. Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 37(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253
  5. Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M. and Kondoh, K. (2015), "Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests", Compos. Sci. Technol., 113, 1-8. https://doi.org/10.1016/j.compscitech.2015.03.009
  6. Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
  7. Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2021a), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory", Eng. Comput., 37(2), 921-936. https://doi.org/10.1007/s00366-019-00864-4
  8. Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates", Eng. Comput., 36(3), 879-895. https://doi.org/10.1007/s00366-019-00737-w
  9. Ebrahimi, F., Seyfi, A. and Teimouri, A. (2021b), "Torsional vibration analysis of scale-dependent non-circular graphene oxide powder-strengthened nanocomposite nanorods", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-021-01528-y
  10. Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, T.A. (2020), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., 36(6), 711-727. https://doi.org/10.12989/scs.2020.36.6.711
  11. Farokhian, A. (2020), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34(5), 733-742. https://doi.org/10.12989/scs.2020.34.5.733
  12. Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555
  13. Ferezghi, Y.S., Sohrabi, M. and Nezhad, S.M.M. (2020), "Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell", Struct. Eng. Mech., 74(5), 679-698. https://doi.org/10.12989/sem.2020.74.5.679
  14. Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6
  15. Gkikas, G., Barkoula, N.M. and Paipetis, A.S. (2012), "Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy", Compos. Part B Eng., 43(6), 2697-2705. https://doi.org/10.1016/j.compositesb.2012.01.070
  16. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177%2F1099636217720373 https://doi.org/10.1177%2F1099636217720373
  17. Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193
  18. Heshmati, M. and Yas, M.H. (2013), "Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach", J. Mech. Sci. Technol., 27(11), 3403-3408. https://doi.org/10.1007/s12206-013-0862-8
  19. Jagannatham, M., Chandran, P., Sankaran, S., Haridoss, P., Nayan, N. and Bakshi, S.R. (2020), "Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review", Carbon, 160, 14-44. https://doi.org/10.1016/j.carbon.2020.01.007
  20. Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., 36(6), 689-702. https://doi.org/10.12989/scs.2020.36.6.689
  21. Khazaei, P. and Mohammadimehr, M. (2020a), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concr., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031
  22. Khazaei, P. and Mohammadimehr, M. (2020b), "Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory", Struct. Eng. Mech., 76(1), 27-56. https://doi.org/10.12989/sem.2020.76.1.027
  23. Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Panah, S.R.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nano-plates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237
  24. Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9
  25. Mahesh, V. and Harursampath, D. (2020a), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5
  26. Mahesh, V. and Harursampath, D. (2020b), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2020.1805059
  27. Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2020), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26(13-14), 1157-1172. https://doi.org/10.1177%2F1077546319892753 https://doi.org/10.1177%2F1077546319892753
  28. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177%2F1099636215613324 https://doi.org/10.1177%2F1099636215613324
  29. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
  30. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eu. J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
  31. Mohammadimehr, M., Akhavan Alavi, S.M., Okhravi, S.V. and Edjtahed, S.H. (2017), "Free vibration analysis of micro-magneto-electro-elastic cylindrical sandwich panel considering functionally graded carbon nanotube-reinforced nanocomposite face sheets, various circuit boundary conditions, and temperature-dependent material properties using high-order sandwich panel theory and modified strain gradient theory", J. Intell. Mater. Syst. Struct., 29(5), 863-882. https://doi.org/10.1177%2F1045389X17721048 https://doi.org/10.1177%2F1045389X17721048
  32. Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S. (2018), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177%2F1077546316664022 https://doi.org/10.1177%2F1077546316664022
  33. Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683
  34. Mohseni, A. and Shakouri, M. (2019), "Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation", J. Mater. Des. Appl., 233(12), 2478-2489. https://doi.org/10.1177%2F1464420719866222 https://doi.org/10.1177%2F1464420719866222
  35. Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinforc. Plast. Compos., 32(9), 593-601. https://doi.org/10.1177%2F0731684413476353 https://doi.org/10.1177%2F0731684413476353
  36. Motezaker, M. and Eyvazian, A (2020a), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481
  37. Motezaker, M. and Eyvazian, A. (2020b), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289
  38. Nazarenko, L., Chirkov, A.Y., Stolarski, H. and Altenbach, H. (2019), "On modeling of carbon nanotubes reinforced materials and on influence of carbon nanotubes spatial distribution on mechanical behavior of structural elements", Int. J. Eng. Sci., 143, 1-13. https://doi.org/10.1016/j.ijengsci.2019.06.008
  39. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077
  40. Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5
  41. Sahmani, S., Fattahi, A.M. & Ahmed, N.A. (2021) Correction to: "Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL", Eng. Comput., 37, 793. https://doi.org/10.1007/s00366-020-01009-8
  42. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027
  43. Shirbani, M.M., Shishesaz, M., Hajnayeb, A. and Sedighi, H.M. (2017), "Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems", Physica E, 90, 158-169. https://doi.org/10.1016/j.physe.2017.03.022
  44. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
  45. Thomas, B. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mechanica, 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z
  46. Thomas, B. and Roy, T. (2017), "Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures", J. Vib. Control, 23(11), 1711-1738. https://doi.org/10.1177%2F1077546315599680 https://doi.org/10.1177%2F1077546315599680
  47. Tsai, J.L. and Lu, T.C. (2009), "Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites", Compos. Struct., 90(2), 172-179. https://doi.org/10.1016/j.compstruct.2009.03.004
  48. Tung, H.V. (2017), "Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints", J. Therm. Stress., 40(5), 641-663. https://doi.org/10.1080/01495739.2016.1254577
  49. Vinyas, M. (2019a), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046
  50. Vinyas, M. (2019b), "A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086
  51. Vinyas, M. (2020), "Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study", Mater. Res. Exp., 6(12), 125707. https://doi.org/10.1088/2053-1591/ab6649
  52. Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253, 112749. https://doi.org/10.1016/j.compstruct.2020.112749
  53. Vinyas, M., Sunny, K.K., Harursampath, D., Nguyen-Thoi, T. and Loja, M.A.R. (2019), "Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates", Compos. Struct., 226, 11254. https://doi.org/10.1016/j.compstruct.2019.111254
  54. Wang, W., Zhu, Y., Liao, S. and Li, J. (2014), "Carbon nanotubes reinforced composites for biomedical applications", BioMed Res. Int., 2014. https://doi.org/10.1155/2014/518609
  55. Zare, Y. and Rhee, K.Y. (2020), "Tensile modulus prediction of carbon nanotubes-reinforced nanocomposites by a combined model for dispersion and networking of nanoparticles", J. Mater. Res. Technol., 9(1), 22-32. https://doi.org/10.1016/j.jmrt.2019.10.025
  56. Zhou, C., Zhan, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215
  57. Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295
  58. Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211