Acknowledgement
The financial support by The Royal Society of London through Newton International Fellowship (NIF⧵R1⧵212432) is sincerely acknowledged by the authors Vinyas Mahesh and Sathiskumar A Ponnusami. The financial support by Science and Engineering for Research Excellence (TAR/2021/000016) is sincerely acknowledged by the authors Vishwas Mahesh and Dineshkumar Harursampath.
References
- Allahkarami, F. (2020), "Dynamic buckling of functionally graded multilayer graphene nanocomposite annular plate under different boundary conditions in thermal environment", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01169-7
- Annigeri, A.R., Ganesan, N. and Swarnamani, S. (2007), "Free vibration behaviour of multiphase and layered magneto-electro-elastic beam", J. Sound Vib., 299(1-2), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044
- Arani, A.G., Kiani, F. and Afshari, H. (2021), "Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels", J. Sandw. Struct. Mater., 23(1), 255-278. https://doi.org/10.1177%2F1099636219830787 https://doi.org/10.1177%2F1099636219830787
- Cao, Y., Musharavati, F., Baharom, S., Talebizadehsardari, P., Sebaey, T.A., Eyvazian, A. and Zain, A.M. (2020), "Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution", Steel Compos. Struct., 37(2), 253-258. https://doi.org/10.12989/scs.2020.37.2.253
- Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M. and Kondoh, K. (2015), "Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests", Compos. Sci. Technol., 113, 1-8. https://doi.org/10.1016/j.compscitech.2015.03.009
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829. https://doi.org/10.1080/15376494.2016.1196786
- Ebrahimi, F., Farazmandnia, N., Kokaba, M.R. and Mahesh, V. (2021a), "Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory", Eng. Comput., 37(2), 921-936. https://doi.org/10.1007/s00366-019-00864-4
- Ebrahimi, F., Nouraei, M. and Dabbagh, A. (2020), "Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates", Eng. Comput., 36(3), 879-895. https://doi.org/10.1007/s00366-019-00737-w
- Ebrahimi, F., Seyfi, A. and Teimouri, A. (2021b), "Torsional vibration analysis of scale-dependent non-circular graphene oxide powder-strengthened nanocomposite nanorods", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-021-01528-y
- Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, T.A. (2020), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., 36(6), 711-727. https://doi.org/10.12989/scs.2020.36.6.711
- Farokhian, A. (2020), "The effect of voltage and nanoparticles on the vibration of sandwich nanocomposite smart plates", Steel Compos. Struct., 34(5), 733-742. https://doi.org/10.12989/scs.2020.34.5.733
- Farokhian, A. and Kolahchi, R. (2020), "Frequency and instability responses in nanocomposite plate assuming different distribution of CNTs", Struct. Eng. Mech., 73(5), 555-563. https://doi.org/10.12989/sem.2020.73.5.555
- Ferezghi, Y.S., Sohrabi, M. and Nezhad, S.M.M. (2020), "Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell", Struct. Eng. Mech., 74(5), 679-698. https://doi.org/10.12989/sem.2020.74.5.679
- Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36(4), 1417-1433. https://doi.org/10.1007/s00366-019-00773-6
- Gkikas, G., Barkoula, N.M. and Paipetis, A.S. (2012), "Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy", Compos. Part B Eng., 43(6), 2697-2705. https://doi.org/10.1016/j.compositesb.2012.01.070
- Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177%2F1099636217720373 https://doi.org/10.1177%2F1099636217720373
- Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193
- Heshmati, M. and Yas, M.H. (2013), "Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach", J. Mech. Sci. Technol., 27(11), 3403-3408. https://doi.org/10.1007/s12206-013-0862-8
- Jagannatham, M., Chandran, P., Sankaran, S., Haridoss, P., Nayan, N. and Bakshi, S.R. (2020), "Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review", Carbon, 160, 14-44. https://doi.org/10.1016/j.carbon.2020.01.007
- Karami, B., Shahsavari, D., Ordookhani, A., Gheisari, P., Li, L. and Eyvazian, A. (2020), "Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions", Steel Compos. Struct., 36(6), 689-702. https://doi.org/10.12989/scs.2020.36.6.689
- Khazaei, P. and Mohammadimehr, M. (2020a), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concr., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031
- Khazaei, P. and Mohammadimehr, M. (2020b), "Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory", Struct. Eng. Mech., 76(1), 27-56. https://doi.org/10.12989/sem.2020.76.1.027
- Kolahdouzan, F., Mosayyebi, M., Ghasemi, F.A., Kolahchi, R. and Panah, S.R.M. (2020), "Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nano-plates", Adv. Nano Res., 9(4), 237-250. https://doi.org/10.12989/anr.2020.9.4.237
- Ma, L., Liu, X. and Moradi, Z. (2021), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9
- Mahesh, V. and Harursampath, D. (2020a), "Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01098-5
- Mahesh, V. and Harursampath, D. (2020b), "Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2020.1805059
- Mallek, H., Jrad, H., Wali, M., Kessentini, A., Gamaoun, F. and Dammak, F. (2020), "Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads", J. Vib. Control, 26(13-14), 1157-1172. https://doi.org/10.1177%2F1077546319892753 https://doi.org/10.1177%2F1077546319892753
- Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177%2F1099636215613324 https://doi.org/10.1177%2F1099636215613324
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eu. J. Mech. A Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005
- Mohammadimehr, M., Akhavan Alavi, S.M., Okhravi, S.V. and Edjtahed, S.H. (2017), "Free vibration analysis of micro-magneto-electro-elastic cylindrical sandwich panel considering functionally graded carbon nanotube-reinforced nanocomposite face sheets, various circuit boundary conditions, and temperature-dependent material properties using high-order sandwich panel theory and modified strain gradient theory", J. Intell. Mater. Syst. Struct., 29(5), 863-882. https://doi.org/10.1177%2F1045389X17721048 https://doi.org/10.1177%2F1045389X17721048
- Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S. (2018), "Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT", J. Vib. Control, 24(8), 1551-1569. https://doi.org/10.1177%2F1077546316664022 https://doi.org/10.1177%2F1077546316664022
- Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683
- Mohseni, A. and Shakouri, M. (2019), "Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation", J. Mater. Des. Appl., 233(12), 2478-2489. https://doi.org/10.1177%2F1464420719866222 https://doi.org/10.1177%2F1464420719866222
- Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh-Bahreini, R. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinforc. Plast. Compos., 32(9), 593-601. https://doi.org/10.1177%2F0731684413476353 https://doi.org/10.1177%2F0731684413476353
- Motezaker, M. and Eyvazian, A (2020a), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481
- Motezaker, M. and Eyvazian, A. (2020b), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289
- Nazarenko, L., Chirkov, A.Y., Stolarski, H. and Altenbach, H. (2019), "On modeling of carbon nanotubes reinforced materials and on influence of carbon nanotubes spatial distribution on mechanical behavior of structural elements", Int. J. Eng. Sci., 143, 1-13. https://doi.org/10.1016/j.ijengsci.2019.06.008
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077
- Rostami, R. and Mohammadimehr, M. (2020), "Vibration control of rotating sandwich cylindrical shell-reinforced nanocomposite face sheet and porous core integrated with functionally graded magneto-electro-elastic layers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01052-5
- Sahmani, S., Fattahi, A.M. & Ahmed, N.A. (2021) Correction to: "Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL", Eng. Comput., 37, 793. https://doi.org/10.1007/s00366-020-01009-8
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027
- Shirbani, M.M., Shishesaz, M., Hajnayeb, A. and Sedighi, H.M. (2017), "Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems", Physica E, 90, 158-169. https://doi.org/10.1016/j.physe.2017.03.022
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135
- Thomas, B. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mechanica, 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z
- Thomas, B. and Roy, T. (2017), "Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures", J. Vib. Control, 23(11), 1711-1738. https://doi.org/10.1177%2F1077546315599680 https://doi.org/10.1177%2F1077546315599680
- Tsai, J.L. and Lu, T.C. (2009), "Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites", Compos. Struct., 90(2), 172-179. https://doi.org/10.1016/j.compstruct.2009.03.004
- Tung, H.V. (2017), "Thermal buckling and postbuckling behavior of functionally graded carbon-nanotube-reinforced composite plates resting on elastic foundations with tangential-edge restraints", J. Therm. Stress., 40(5), 641-663. https://doi.org/10.1080/01495739.2016.1254577
- Vinyas, M. (2019a), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046
- Vinyas, M. (2019b), "A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086
- Vinyas, M. (2020), "Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study", Mater. Res. Exp., 6(12), 125707. https://doi.org/10.1088/2053-1591/ab6649
- Vinyas, M. and Harursampath, D. (2020), "Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes", Compos. Struct., 253, 112749. https://doi.org/10.1016/j.compstruct.2020.112749
- Vinyas, M., Sunny, K.K., Harursampath, D., Nguyen-Thoi, T. and Loja, M.A.R. (2019), "Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates", Compos. Struct., 226, 11254. https://doi.org/10.1016/j.compstruct.2019.111254
- Wang, W., Zhu, Y., Liao, S. and Li, J. (2014), "Carbon nanotubes reinforced composites for biomedical applications", BioMed Res. Int., 2014. https://doi.org/10.1155/2014/518609
- Zare, Y. and Rhee, K.Y. (2020), "Tensile modulus prediction of carbon nanotubes-reinforced nanocomposites by a combined model for dispersion and networking of nanoparticles", J. Mater. Res. Technol., 9(1), 22-32. https://doi.org/10.1016/j.jmrt.2019.10.025
- Zhou, C., Zhan, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215
- Zhou, C., Zhao, Y., Zhang, J., Fang, Y. and Habibi, M. (2020), "Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system", Adv. Nano Res., 9(4), 295-307. https://doi.org/10.12989/anr.2020.9.4.295
- Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211