DOI QR코드

DOI QR Code

Efficacy of nano-drugs in muscle injury rehabilitation and fatigue relief

  • Zicheng, Wang (Department of TCM, the Affiliated Hospital of Yangzhou University, Yangzhou University) ;
  • Yanqing, Liu (Department of TCM, the Affiliated Hospital of Yangzhou University, Yangzhou University) ;
  • Haibo, Wang (Medical College, Yangzhou University) ;
  • Dai, Liu (Department of TCM, the Affiliated Hospital of Yangzhou University, Yangzhou University) ;
  • Niuniu, Yang (Department of TCM, the Affiliated Hospital of Yangzhou University, Yangzhou University) ;
  • Mengying, Lv (Medical College, Yangzhou University)
  • Received : 2022.01.07
  • Accepted : 2022.07.12
  • Published : 2023.01.25

Abstract

Gold nanoparticles have recognized a promising drug carriers in many diseases. These nanoparticles could carry anti-inflammatory drugs in the case of muscle injury and for fatigue relief. On the other hand, specific surface of this kind of nanoparticles could be critical in amount of drug they could carry. Therefore, in this study, we explore different methodology and influencing parameters on the specific surface of gold nanoparticles. After specifying the main parameters, different machine learning and artificial neural network are adopted to model the effects of different parameters. Furthermore, response surface methodology is utilized to obtain a quadrilateral relationship between different parameters and specific surface. The results indicate that concentration of the gold salt solution is the most important parameter in increasing the size of gold nanoparticle and, as a consequence, increasing specific surface. Moreover, the ability of gold nanoparticles in prolonging retention of the drugs is discussed in detail.

Keywords

References

  1. Ahmad, T., Wani, I.A., Ahmed, J. and Al-Hartomy, O.A. (2014), "Effect of gold ion concentration on size and properties of gold nanoparticles in TritonX-100 based inverse microemulsions", Appl. Nanosci., 4(4), 491-498. https://doi.org/10.1007/s13204-013-0224-y
  2. Alipour, M., Torabi, M.A., Sareban, M., Lashini, H., Sadeghi, E., Fazaeli, A., Habibi, M. and Hashemi, R. (2020), "Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels", Mech. Based Des. Struct., 48(5), 525-541. https://doi.org/10.1080/15397734.2019.1633343
  3. Amelirad, O. and Assempour, A. (2019), "Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets", J. Manuf. Proce.,7, 310-323. https://doi.org/10.1016/j.jmapro.2019.09.035
  4. Amelirad, O. and Assempour, A. (2021), "Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01346-2
  5. Bayer, M.L., Magnusson, S.P. and Kjaer, M. (2017), "Early versus delayed rehabilitation after acute muscle injury", New England J. Med., 377(13), 1300-1301. https://doi.org/10.1056/NEJMc1708134
  6. Cao, Z., Wang, Y., Zheng, W., Yin, L., Tang, Y., Miao, W., Liu, S. and Yang, B. (2022), "The algorithm of stereo vision and shape from shading based on endoscope imaging", Biomed. Signal Pr. Control, 76, 103658. https://doi.org/10.1016/j.bspc.2022.103658
  7. Chen, F., Chen, J., Duan, R., Habibi, M. and Khadimallah, M.A. (2022), "Investigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any yawed angle", Compos. Struct., 115195. https://doi.org/10.1016/j.compstruct.2022.115195
  8. Coccia, M. (2020), "Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence", Technol. Soc., 60, 101198. https://doi.org/10.1016/j.techsoc.2019.101198
  9. da Rocha, F.R., Haupenthal, D.P.d.S., Zaccaron, R.P., Correa, M.E.A.B., Tramontin, N.d.S., Fonseca, J.P., Nesi, R.T., Muller, A.P., Pinho, R.A., Paula, M.M.d.S. and Silveira, P.C.L. (2020), "Therapeutic effects of iontophoresis with gold nanoparticles in the repair of traumatic muscle injury", J. Drug Target., 28(3), 307-319. https://doi.org/10.1080/1061186X.2019.1652617
  10. Dehghani, S., Peighambardoust, S.H., Peighambardoust, S.J., Fasihnia, S.H., Khosrowshahi, N.K., Gullon, B. and Lorenzo, J.M. (2021), "Optimization of the amount of ZnO, CuO, and Ag nanoparticles on antibacterial properties of low-density polyethylene (ldpe) films using the response surface method", Food Anal. Meth., 14(1), 98-107. https://doi.org/10.1007/s12161-020-01856-7
  11. Dong, Y., Gao, Y., Zhu, Q., Moradi, Z. and Safa, M. (2022), "TEGDQE implementation to investigate the vibration of FG composite conical shells considering a frequency controller solid ring", Eng. Anal. Bound. Elem., 138, 95-107. https://doi.org/10.1016/j.enganabound.2022.01.017
  12. dos Santos Haupenthal, D.P., Zortea, D., Zaccaron, R.P., de Bem Silveira, G., Correa, M.E.A.B., Mendes, C., de Roch Casagrande, L., Duarte, M.B., Pinho, R.A., Feuser, P.E., Machado-de-A vila, R.A. and Silveira, P.C.L. (2020), "Effects of phonophoresis with diclofenac linked gold nanoparticles in model of traumatic muscle injury", Mater. Sci. Eng., 110, 110681. https://doi.org/10.1016/j.msec.2020.110681
  13. Ebrahimi, F., Habibi, M. and Safarpour, H. (2019), "On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell", Eng. Comput., 35(4), 1375-1389. https://doi.org/10.1007/s00366-018-0669-4
  14. Ebrahimi, F., Hashemabadi, D., Habibi, M. and Safarpour, H. (2020), "Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell", Microsyst. Technol., 26(2), 461-473. https://doi.org/10.1007/s00542-019-04542-9
  15. Esmailpoor Hajilak, Z., Pourghader, J., Hashemabadi, D., Sharifi Bagh, F., Habibi, M. and Safarpour, H. (2019), "Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory", Mech. Based Des. Struct., 47(5), 521-545. https://doi/10.1080/15397734.2019.1566743
  16. Fan, L., Huang, Y., Ji, D., Moradi, Z., Safa, M. and Amine Khadimallah, M. (2022), "Interaction of angular velocity and temperature rise in the thermo-inertia bifurcation buckling of FG laminated nanocomposite annular plates", Eng. Struct., 265, 114518. https://doi.org/10.1016/j.engstruct.2022.114518
  17. Ghazanfari, A., Soleimani, S.S., Keshavarzzadeh, M., Habibi, M., Assempuor, A. and Hashemi, R. (2020), "Prediction of FLD for sheet metal by considering through-thickness shear stresses", Mech. Based Des. Struct., 48(6), 755-772. https://doi.org/10.1080/15397734.2019.1662310
  18. Gonzalez-Mendoza, A.L. and Cabrera-Lara, L.I. (2015), "Reaction parameters for controlled sonosynthesis of gold nanoparticles", J. Mexican Chem. Soc., 59(2), 119-129.
  19. Habib, S.A., Lloyd, J.T., Meredith, C.S., Khan, A.S. and Schoenfeld, S.E. (2019), "Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: Experiments and modeling", Int. J. Plast., 122, 285-318. https://doi.org/10.1016/j.ijplas.2019.07.011
  20. Habibi, M., Ghazanfari, A., Assempour, A., Naghdabadi, R. and Hashemi, R. (2017), "Determination of forming limit diagram using two modified finite element models", Mech. Eng., 48(4), 141-144. https://doi.org/10.22060/MEJ.2016.664
  21. Habibi, M., Hashemabadi, D. and Safarpour, H. (2019a), "Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator", Eur. Phys. J. Plus., 134(6), 307. https://doi.org/10.1140/epjp/i2019-12742-7
  22. Habibi, M., Hashemi, R., Ghazanfari, A., Naghdabadi, R. and Assempour, A. (2018a), "Forming limit diagrams by including the M-K model in finite element simulation considering the effect of bending", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 625-636. https://doi.org/10.1177/1464420716642258
  23. Habibi, M., Hashemi, R., Sadeghi, E., Fazaeli, A., Ghazanfari, A. and Lashini, H. (2016), "Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures", J. Mater. Eng. Perform., 25(2), 382-389. https://doi.org/10.1007/s11665-016-1882-1.
  24. Habibi, M., Hashemi, R., Tafti, M.F. and Assempour, A. (2018b), "Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding", J. Manuf. Proc., 31, 310-323. https://doi.org/10.1016/j.jmapro.2017.11.009
  25. Habibi, M., Mohammadgholiha, M. and Safarpour, H. (2019b), "Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell", J. Brazil. Soc. Mech. Sci. Eng., 41(5), 221. https://doi.org/10.1007/s40430-019-1715-x
  26. Habibi, M., Mohammadi, A., Safarpour, H. and Ghadiri, M. (2019c), "Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell", Mech. Based Des. Struct., 1-30.
  27. Habibi, M., Mohammadi, A., Safarpour, H., Shavalipour, A. and Ghadiri, M. (2019d), "Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2019.1697932
  28. Habibi, M., Taghdir, A. and Safarpour, H. (2019e), "Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets", Compos. Part B Eng., 175, 107125. https://doi.org/10.1016/j.compositesb.2019.107125
  29. Hatakeyama, Y., Morita, T., Takahashi, S., Onishi, K. and Nishikawa, K. (2011), "Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape", J. Phys. Chem. C, 115(8), 3279-3285. https://doi.org/10.1021/jp110455k
  30. Ho, D., Wang, P. and Kee, T. (2019), "Artificial intelligence in nanomedicine", Nanosc. Horizon, 4(2), 365-377. https://doi.org/10.1039/C8NH00233A
  31. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2021), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01456-x.
  32. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2021a), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform microtube", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-021-01395-7
  33. Huang, X., Zhu, Y., Vafaei, P., Moradi, Z. and Davoudi, M. (2021b), "An iterative simulation algorithm for large oscillation of the applicable 2D-electrical system on a complex nonlinear substrate", Eng. Comput., 38(4), 3137-3149. https://doi.org/10.1007/s00366-021-01320-y
  34. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H. and Wang, Y. (2017), "Artificial intelligence in healthcare: past, present and future", Stroke Vascular Neurol., 2(4), 230-243. https://doi.org/10.1136/svn-2017-000101
  35. Jiao, J., Ghoreishi, S.-m., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 38(3), 2499-2513. https://doi.org/10.1007/s00366-021-01391-x
  36. Jung, M., Jin, M.S., Kim, C., Lee, C., Nikas, I.P., Park, J.H. and Ryu, H.S. (2022), "Artificial intelligence system shows performance at the level of uropathologists for the detection and grading of prostate cancer in core needle biopsy: An independent external validation study", Modern Pathol., 1-9. https://doi.org/10.1038/s41379-022-01077-9
  37. Kim, G.W., Kang, C., Oh, Y.B., Ko, M.H., Seo, J.H. and Lee, D. (2017), "Ultrasonographic imaging and anti-inflammatory therapy of muscle and tendon injuries using polymer nanoparticles", Theranostics, 7(9), 2463-2476. https://doi.org/10.7150/thno.18922
  38. Lai, W.F., Gui, D., Wong, M., Doring, A., Rogach, A.L., He, T. and Wong, W.T. (2021), "A self-indicating cellulose-based gel with tunable performance for bioactive agent delivery", J. Drug Deliv. Sci. Technol., 63, 102428. https://doi.org/10.1016/j.jddst.2021.102428
  39. Lai, W.F., Tang, R. and Wong, W.T. (2020), "Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal drug delivery", Pharmaceutics, 12(8), 725. https://doi.org/10.3390/pharmaceutics12080725
  40. Li, H. and Wang, F. (2021), "Core-shell chitosan microsphere with antimicrobial and vascularized functions for promoting skin wound healing", Mater. Des., 204, 109683. https://doi.org/10.1016/j.matdes.2021.109683
  41. Liu, L., Bi, M., Wang, Y., Liu, J., Jiang, X., Xu, Z. and Zhang, X. (2021a), "Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis", Nanoscale, 13(46), 19352-19366. https://doi.org/10.1039/D1NR06195J
  42. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2021b), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-021-01454-z.
  43. Luo, J., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022a), "Effect of simultaneous compressive and inertia loads on the bifurcation stability of shear deformable functionally graded annular fabrications reinforced with graphenes", Eur. J. Mech. A Solids, 104581. https://doi.org/10.1016/j.euromechsol.2022.104581
  44. Luo, J., Wu, S., Hou, S., Moradi, Z., Habibi, M. and Khadimallah, M.A. (2022b), "Thermally nonlinear thermoelasticity of a one-dimensional finite domain based on the finite strain concept", Eur. J. Mech. A Solids, 104726. https://doi.org/10.1016/j.euromechsol.2022.104726
  45. Ma, L., Liu, X. and Moradi, Z. "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01210-9
  46. Mackey, A.L., Mikkelsen, U.R., Magnusson, S.P. and Kjaer, M. (2012), "Rehabilitation of muscle after injury - the role of anti-inflammatory drugs", Scandinavian J. Med. Sci. Sports, 22(4), e8-e14. https://doi.org/10.1111/j.1600-0838.2012.01463.x
  47. Mahmood, H., Shaban, M., Rajpoot, N. and Khurram, S.A. (2021), "Artificial Intelligence-based methods in head and neck cancer diagnosis: An overview", British J. Cancer, 124(12), 1934-1940. https://doi.org/10.1038/s41416-021-01386-x
  48. Michael, M., Meyyazhagan, A., Velayudhannair, K., Pappuswamy, M., Maria, A., Xavier, V., Balasubramanian, B., Baskaran, R., Kamyab, H. and Vasseghian, Y. (2022), "The content of heavy metals in cigarettes and the impact of their leachates on the aquatic ecosystem", Sustainability, 14(8), 4752. https://doi.org/10.3390/su14084752
  49. Moradi, H., Atashi, P., Amelirad, O., Yang, J.-K., Chang, Y.-Y. and Kamranifard, T. (2022), "Machine learning modeling and DOE-assisted optimization in synthesis of nanosilica particles via Stober method", Adv. Nano Res., 12(4), 387-403. https://doi.org/10.12989/anr.2022.12.4.387
  50. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Waves Random Complex Med., 1-24. https://doi.org/10.1080/17455030.2021.1926572
  51. Mountrichas, G., Pispas, S. and Kamitsos, E.I. (2014), "Effect of temperature on the direct synthesis of gold nanoparticles mediated by poly(dimethylaminoethyl methacrylate) homopolymer", J. Phys. Chem. C, 118(39), 22754-22759. https://doi.org/10.1021/jp505725v
  52. Nicol, J.R., Dixon, D. and Coulter, J.A. (2015), "Gold nanoparticle surface functionalization: A necessary requirement in the development of novel nanotherapeutics", Nanomedicine, 10(8), 1315-1326. https://doi.org/10.2217/nnm.14.219
  53. Pourjabari, A., Hajilak, Z.E., Mohammadi, A., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041
  54. Raimondo, T.M. and Mooney, D.J. (2018), "Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice", Proceedings of the National Academy of Sciences. 115(42), 10648-10653. https://doi.org/10.1073/pnas.1806908115
  55. Safarpour, H., Ghanizadeh, S.A. and Habibi, M. (2018), "Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory", Eur. Phys. J. Plus, 133(12), 532. https://doi.org/10.1140/epjp/i2018-12385-2.
  56. Safarpour, H., Hajilak, Z.E. and Habibi, M. (2019a), "A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation", Int. J. Mech. Mater. Des., 15(3), 569-583. https://doi.org/10.1007/s10999-018-9431-8.
  57. Safarpour, H., Pourghader, J. and Habibi, M. (2019b), "Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator", J. Vib. Control, 25(9), 1543-1557. https://doi.org/10.1177/1077546319828465
  58. Safarpour, M., Ebrahimi, F., Habibi, M. and Safarpour, H. (2020), "On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-020-00949-5
  59. Seol, S.K., Kim, D., Jung, S. and Hwu, Y. (2011), "Microwave synthesis of gold nanoparticles: Effect of applied microwave power and solution pH", Mater. Chem. Phys., 131(1), 331-335. https://doi.org/10.1016/j.matchemphys.2011.09.050
  60. Seong-Woo, H., Shang-Woon, S. and Doo-Sung, A. (2001). "Formation control based on artificial intelligence for multi-agent coordination", ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570), 12-16 June 2001.
  61. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M. and Safa, M. (2020a), "Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load", Geomech. Eng., 20(2), 87-101. https://doi.org/10.12989/gae.2020.20.2.087
  62. Shariati, M., Davoodnabi, S.M., Toghroli, A., Kong, Z. and Shariati, A. (2021a), "Hybridization of metaheuristic algorithms with adaptive neuro-fuzzy inference system to predict load-slip behavior of angle shear connectors at elevated temperatures", Compos. Struct., 114524. https://doi.org/10.1016/j.compstruct.2021.114524
  63. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Toghroli, A., Trung, N.T. and Salih, M.N. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569
  64. Shariati, M., Ghorbani, M., Naghipour, M., Alinejad, N. and Toghroli, A. (2020b), "The effect of RBS connection on energy absorption in tall buildings with braced tube frame system", Steel Compos. Struct., 34(3), 393-407. https://doi.org/10.12989/scs.2020.34.3.393
  65. Shariati, M., Lagzian, M., Maleki, S., Shariati, A. and Trung, N.T. (2020c), "Evaluation of seismic performance factors for tension-only braced frames", Steel Compos. Struct., 35(4), 599-609. https://doi.org/10.12989/scs.2020.35.4.599
  66. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2020d), "A novel hybrid extreme learning machine-grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01081-0
  67. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020e), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
  68. Shariati, M., Naghipour, M., Yousofizinsaz, G., Toghroli, A. and Tabarestani, N.P. (2020f), "Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines", Steel Compos. Struct. 34(3), 377-391. http://doi.org/10.12989/scs.2020.34.3.377
  69. Shariati, M., Shariati, A., Trung, N.T., Shoaei, P., Ameri, F., Bahrami, N. and Zamanabadi, S.N. (2021b), "Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics", Constr. Build. Mater., 267, 120886. https://doi.org/10.1016/j.conbuildmat.2020.120886
  70. Shariati, M., Sulong, N.R. and Khanouki, M.A. (2012), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008
  71. Shariati, M., Sulong, N.R., Shariati, A. and Khanouki, M.A. (2016a), "Behavior of V-shaped angle shear connectors: Experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8
  72. Shariati, M., Sulong, N.R., Shariati, A. and Kueh, A. (2016b), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102
  73. Shariati, M., Tahmasbi, F., Mehrabi, P., Bahadori, A. and Toghroli, A. (2020g), "Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: an experimental investigation", Steel Compos Struct. 35(2), 237-247. http://doi.org/10.12989/scs.2020.35.2.237
  74. Silveira, P.C.L., Victor, E.G., Notoya, F.d.S., Scheffer, D.d.L., Silva, L.d., Cantu, R.B., Martinez, V.H.C., de Pinho, R.A. and Paula, M.M.d.S. (2016), "Effects of phonophoresis with gold nanoparticles on oxidative stress parameters in a traumatic muscle injury model", Drug Delivery, 23(3), 916-922. https://doi.org/10.3109/10717544.2014.923063
  75. Singh, A.K. and Srivastava, O.N. (2015), "One-Step Green Synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis", Nanosc. Res. Lett., 10(1), 353. https://doi.org/10.1186/s11671-015-1055-4
  76. Singh, A.V., Rosenkranz, D., Ansari, M.H.D., Singh, R., Kanase, A., Singh, S.P., Johnston, B., Tentschert, J., Laux, P. and Luch, A. (2020), "Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction", Adv. Intell. Syst., 2(12), 2000084. https://doi.org/10.1002/aisy.202000084
  77. Sivaraman, S.K., Kumar, S. and Santhanam, V. (2010), "Room-temperature synthesis of gold nanoparticles - Size-control by slow addition", Gold Bulletin. 43(4), 275-286. https://doi.org/10.1007/BF03214997
  78. Tang, Y., Liu, S., Deng, Y., Zhang, Y., Yin, L. and Zheng, W. (2021), "An improved method for soft tissue modeling", Biomed. Signal Pr. Control, 65, 102367. https://doi.org/10.1016/j.bspc.2020.102367
  79. Tran, M., DePenning, R., Turner, M. and Padalkar, S. (2016), "Effect of citrate ratio and temperature on gold nanoparticle size and morphology", Materials Research Express. 3(10), 105027. https://doi.org/10.1088/2053-1591/3/10/105027
  80. Troyanskaya, O., Trajanoski, Z., Carpenter, A., Thrun, S., Razavian, N. and Oliver, N. (2020), "Artificial intelligence and cancer", Nature Cancer, 1(2), 149-152. https://doi.org/10.1038/s43018-020-0034-6
  81. Wang, H., Habibi, M., Marzouki, R., Majdi, A., Shariati, M., Denic, N., Zakic, A., Khorami, M., Khadimallah, M.A. and Ebid, A.A.K. (2022a), "Improving the self-healing of cementitious materials with a hydrogel system", Gels, 8(5), 278. https://doi.org/10.3390/gels8050278
  82. Wang, Y., Yang, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022b), "Nonlinear dynamic analysis of thermally deformed beams subjected to uniform loading resting on nonlinear viscoelastic foundation", Eur. J. Mech. A Solids, 95, 104638. https://doi.org/10.1016/j.euromechsol.2022.104638
  83. Wong, F.S. (1985), "Slope reliability and response surface method", J. Geotech. Eng., 111(1), 32-53. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:1(32)
  84. Xia, W., Du, J., Habibi, M., Shariati, M. and Khadimallah, M.A. (2022), "Application of Chebyshev-based GDQ and Newmark methods to viscothermoelasticity responses of FG composite annular systems", Eng. Anal. Bound. Elem., 143, 28-42. https://doi.org/10.1016/j.enganabound.2022.06.003
  85. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 114395. https://doi.org/10.1016/j.compstruct.2021.114395
  86. Xue, X., Liu, H., Wang, S., Hu, Y., Huang, B., Li, M., Gao, J., Wang, X. and Su, J. (2022a), "Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/anti-inflammatory therapy of osteoarthritis", Compos. Part B Eng., 237, 109855. https://doi.org/10.1016/j.compositesb.2022.109855
  87. Xue, X., Zhang, H., Liu, H., Wang, S., Li, J., Zhou, Q., Chen, X., Ren, X., Jing, Y. and Deng, Y. (2022b), "Rational design of multifunctional CuS nanoparticle-PEG composite soft hydrogel-coated 3D hard polycaprolactone scaffolds for efficient bone regeneration", Adv. Funct. Mater., 2202470. https://doi.org/10.1002/adfm.202202470
  88. Yang, N., Moradi, Z., Khadimallah, M.A. and Arvin, H. (2022a), "Application of the Chebyshev-Ritz route in determination of the dynamic instability region boundary for rotating nanocomposite beams reinforced with graphene platelet subjected to a temperature increment", Eng. Anal. Bound. Elem., 139, 169-179. https://doi.org/10.1016/j.enganabound.2022.03.013
  89. Yang, W., Liu, W., Li, X., Yan, J. and He, W. (2022b), "Turning Chiral Peptides into a Racemic Supraparticle to Induce the Self-Degradation of MDM2", J. Adv. Res., In Press. https://doi.org/10.1016/j.jare.2022.05.009
  90. Yegnanarayana, B. (2009), Artificial Neural Networks, PHI Learning Pvt. Ltd.
  91. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Syst. Signal Pr., 165, 108373.
  92. Zhang, Z., Wang, L., Zheng, W., Yin, L., Hu, R. and Yang, B. (2022), "Endoscope image mosaic based on pyramid ORB", Biomed. Signal Pr. Control, 71, 103261. https://doi.org/10.1016/j.bspc.2021.103261
  93. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1
  94. Zhu, L., Ren, H., Habibi, M., Mohammed, K.J. and Khadimallah, M.A. (2022), "Predicting the environmental economic dispatch problem for reducing waste nonrenewable materials via an innovative constraint multi-objective Chimp Optimization Algorithm", J. Cleaner Prod., 132697. https://doi.org/10.1016/j.jclepro.2022.132697
  95. Zhuo, Z., Wan, Y., Guan, D., Ni, S., Wang, L., Zhang, Z., Liu, J., Liang, C., Yu, Y. and Lu, A. (2020), "A loop-based and AGO-Incorporated virtual screening model targeting AGO-Mediated miRNA-mRNA interactions for drug discovery to rescue bone phenotype in genetically modified Mice", Adv. Sci., 7(13), 1903451. https://doi.org/10.1002/advs.201903451
  96. Zou, Q., Xing, P., Wei, L. and Liu, B. (2019), "Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA", Rna, 25(2), 205-218. https://doi.org/10.1261/rna.069112.118