DOI QR코드

DOI QR Code

Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method

  • M.W., Chuan (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia) ;
  • S.Z., Lok (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia) ;
  • A., Hamzah (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia) ;
  • N.E., Alias (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia) ;
  • S. Mohamed, Sultan (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia) ;
  • C.S., Lim (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia) ;
  • M.L.P, Tan (Faculty of Electrical Engineering Engineering, Universiti Teknologi Malaysia)
  • 투고 : 2021.08.04
  • 심사 : 2022.10.13
  • 발행 : 2023.01.25

초록

Driven by the scaling down of transistor node technology, graphene became of interest to many researchers following the success of its fabrication as graphene nanoribbons (GNRs). However, during the fabrication of GNRs, it is not uncommon to have defects within the GNR structures. Scaling down node technology also changes the modelling approach from the classical Boltzmann transport equation to the quantum transport theory because the quantum confinement effects become significant at sub-10 nanometer dimensions. The aim of this study is to examine the effect of Stone-Wales defects on the electronic properties of GNRs using a tight-binding model, based on Non-Equilibrium Green's Function (NEGF) via numeric computation methods using MATLAB. Armchair and zigzag edge defects are also implemented in the GNR structures to mimic the practical fabrication process. Electronic properties of pristine and defected GNRs of various lengths and widths were computed, including their band structure and density of states (DOS). The results show that Stone-Wales defects cause fluctuation in the band structure and increase the bandgap values for both armchair GNRs (AGNRs) and zigzag GNRs (ZGNRs) at every simulated width. In addition, Stone-Wales defects reduce the numerical computation DOS for both AGNRs and ZGNRs. However, when the lengths of the structures increase with fixed widths, the effect of the Stone-Wales defects become less significant.

키워드

과제정보

This work was supported and funded by the Ministry of Higher Education under the Fundamental Research Grant Scheme (FRGS/1/2021/STG07/UTM/02/3). The authors acknowledge the Research Management Centre (RMC), School of Graduate Studies (SPS), and Faculty of Electrical Engineering (FKE) of Universiti Teknologi Malaysia (UTM) for providing excellent support and stimulating the research environment.

참고문헌

  1. Baggott, J. (2000), The Meaning of Quantum Theory: A Guide For Students of Chemistry and Physics, Oxford University Press, U.K.
  2. Buapong, S. and Hanlumyuang, Y. (2017), "The effects of stone wales defect on quantum capacitance in carbon nanotube", J. Sci. Technol. Ubon Ratchathani University, Special Issue November 2017, 47-53.
  3. Chang, S., Zhang, Y., Huang, Q., Wang, H. and Wang, G. (2013), "Effects of vacancy defects on graphene nanoribbon field effect transistor", Micro Nano Lett., 8(11), 816-821. http://doi.org/10.1049/mnl.2013.0457.
  4. Chin, S.K., Lam, K.T., Seah, D. and Liang, G. (2012), "Quantum transport simulations of graphene nanoribbon devices using Dirac equation calibrated with tight-binding π-bond model", Nanosc. Res. Lett., 7(1),114. http://doi.org/10.1186/1556-276X-7-114.
  5. Chuan, M.W., Lau, J.Y., Wong, K.L., Hamzah, A., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021a), "Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications", Adv. Nano Res., 10(5), 415-422. https://doi.org/10.12989/anr.2021.10.5.415.
  6. Chuan, M.W., Wong, K.L., Hamzah, A., Rusli, S., Alias, N.E., Lim, C.S. and Tan, M.L.P. (2021b), "Device modelling and performance analysis of two-dimensional AlSi3 ballistic nanotransistor", Adv. Nano Res., 10(1), 91-99. http://doi.org/10.12989/anr.2021.10.1.091.
  7. Datta, S. (1997), Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9780511805776.
  8. Datta, S. (2002), "The non-equilibrium Green's function (NEGF) formalism: An elementary introduction", Electr. Devices Meet., 7509381. https://doi.org/10.1109/iedm.2002.1175935.
  9. Datta, S. (2005), Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge, U.K. https://doi.org/10.1017/CBO9781139164313.
  10. Datta, S., Lundstrom, M., Alam, M.A. and Appenzeller, J. (2009). NCN@Purdue Summer School: Electronics from the Bottom Up, NanoHUB, Indiana, U.S.A.
  11. Faez, R. and Barami, S. (2013), "Spin effect on band structure of zigzag and armchair graphene nanoribbones with Stone-Wales defect", Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), May, 1-4. https://doi.org/10.1109/iraniancee.2013.6599606.
  12. Goh, E., Chin, H.C., Wong, K.L., Indra, I.S.B. and Tan, M.L.P. (2018), "Modeling and simulation of the electronic properties in graphene nanoribbons of varying widths and lengths using tightbinding Hamiltonian", J. Nanoelectr. Optoelectr., 13(2), 289-300. http://doi.org/10.1166/jno.2018.2206.
  13. Hamdi, H., Thiering, G., Bodrog, Z., Ivady, V. and Gali, A. (2020), "Stone-Wales defects in hexagonal boron nitride as ultraviolet emitters", npj Comput. Mater., 6(1), 178. https://doi.org/10.1038/s41524-020-00451-y.
  14. Hawkins, P., Begliarbekov, M., Zivkovic, M., Strauf, S. and Search, C.P. (2012), "Quantum transport in graphene nanoribbons with realistic edges", J. Phys. Chem. C, 116(34), 18382-18387. https://doi.org/10.1021/jp304676h.
  15. Hook, T.B. (2018), "Power and technology scaling into the 5 nm node with stacked nanosheets", Joule, 2(1), 1-4. https://doi.org/10.1016/j.joule.2017.10.014.
  16. Kumar, J., Ansh and Shrivastava, M. (2020), "Stone-wales defect and vacancy-assisted enhanced atomic orbital interactions between graphene and ambient gases: A first-principles insight", ACS Omega, 5(48), 31281-31288. https://doi.org/10.1021/acsomega.0c04729.
  17. Kurban, H. and Kurban, M. (2021), "Rare-class learning over Mgdoped ZnO nanoparticles", Chem. Phys., 546, 111159. https://doi.org/10.1016/j.chemphys.2021.111159.
  18. Kurban, H., Alaei, S. and Kurban, M. (2021a), "Effect of Mg content on electronic structure, optical and structural properties of amorphous ZnO nanoparticles: A DFTB study", J. NonCrystal. Solids. 560, 120726. https://doi.org/10.1016/j.jnoncrysol.2021.120726.
  19. Kurban, H., Kurban, M., Sharma, P. and Dalkilic, M.M. (2021b), "Predicting atom types of anatase tio2 nanoparticles with machine learning", Key Eng. Mater., 880, 89-94. https://doi.org/10.4028/www.scientific.net/KEM.880.89.
  20. Lee, K.H., Schnupf, U., Sumpter, B.G. and Irle, S. (2018), "Performance of density-functional tight-binding in comparison to Ab initio and first-principles methods for isomer geometries and energies of glucose epimers in vacuo and solution", ACS Omega, 3(12), 16899-16915. https://doi.org/10.1021/acsomega.8b02213.
  21. Leiserson, C.E., Thompson, N.C., Emer, J.S., Kuszmaul, B.C., Lampson, B.W., Sanchez, D. and Schardl, T.B. (2020), "There's plenty of room at the top: What will drive computer performance after Moore's law?", Science, 368(6495), eaam9744. https://doi.org/10.1126/science.aam9744.
  22. Li, T. and Lu, S.P. (2008), "Quantum conductance of graphene nanoribbons with edge defects", Phys. Rev. B, 77(8), 085408. https://doi.org/10.1103/PhysRevB.77.085408.
  23. Moffatt, P. and Kim, H.E. (2006), "Negative differential resistance from a van Hove singularity in tunnel diodes", Appl. Phys. Lett. 89(19), 192117. https://doi.org/10.1063/1.2387119.
  24. Nguyen, T.T., Bui, H.T., Nguyen, U.V. and Le, T. (2018), "Tuning electronic transport properties of zigzag graphene nanoribbons with stone-wales defect", Commun. Phys., 28(3), 201. https://doi.org/10.15625/0868-3166/28/3/12670.
  25. Oxtoby, D.W., Gillis, H.P. and Butler, L.J. (2015), Principles of Modern Chemistry, Cengage learning, Boston, U.S.A.
  26. Reich, S., Thomsen, C. and Maultzsch, J. (2008), Carbon Nanotubes: Basic Concepts and Physical Properties, John Wiley & Sons, Germany.
  27. Rodrigues, J.N.B., Goncalves, P.A.D., Rodrigues, N.F.G., Ribeiro, R.M., Lopes Dos Santos, J.M.B. and Peres, N.M.R. (2011), "Zigzag graphene nanoribbon edge reconstruction with StoneWales defects", Phys. Rev. B, 84(15), 155435. https://doi.org/10.1103/physrevb.84.155435.
  28. Schrodinger, E. (1926), "An undulatory theory of the mechanics of atoms and molecules", Phys. Rev., 28(6), 1049. https://doi.org/10.1103/PhysRev.28.1049.
  29. Tang, M.S., Wang, C.Z., Chan, C.T. and Ho, K.M. (1996), "Environment-dependent tight-binding potential model", Phys. Rev. B, 53(3), 979-982. https://doi.org/10.1103/physrevb.53.979.
  30. Terrones, M., Botello-Mendez, A.R., Campos-Delgado, J., LopezUrias, F., Vega-Cantu, Y.I., Rodriguez-Macias, F.J., Elias, A.L., Munoz-Sandoval, E., Cano-Marquez, A.G. and Charlier, J.C. (2010), "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications", Nano Today, 5(4),351-372. https://doi.org/10.1016/j.nantod.2010.06.010.
  31. Usuki, T., Saito, M., Takatsu, M., Kiehl, R.A. and Yokoyama, N. (1995), "Numerical analysis of ballistic-electron transport in magnetic fields by using a quantum point contact and a quantum wire", Phys. Rev. B, 52(11), 8244-8255. https://dx.doi.org/10.1103/physrevb.52.8244.
  32. Usuki, T., Takatsu, M., Kiehl, R.A. and Yokoyama, N. (1994), "Numerical analysis of electron-wave detection by a wedgeshaped point contact", Phys. Rev. B, 50(11), 7615-7625. https://doi.org/10.1103/physrevb.50.7615.
  33. Wang, C.Z., Lu, W.C., Yao, Y.X., Li, J., Yip, S. and Ho, K.M. (2008), Tight-binding Hamiltonian from First-Principles Calculations, Springer, Netherlands. https://doi.org/10.1007/978-1-4020-9741-6_8.
  34. Wong, K., Chuan, M.W., Hamzah, A., Alias, N., Lim, C.S., Tan, M.L.P. and Junhuan, L. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., 7(3), 209-221. http://doi.org/10.12989/anr.2019.7.3.209.
  35. Wong, K.L., Chuan, M.W., Hamzah, A., Rusli, S., Alias, N.E., Sultan, S.M., Lim, C.S. and Tan, M.L.P. (2020), "Performance metrics of current transport in pristine graphene nanoribbon field effect transistors using recursive non-equilibrium Green's function approach", Superlatt. Microstruct., 145, 106624. https://doi.org/10.1016/j.spmi.2020.106624.
  36. Zhang, W., Yin, J., Zhang, P. and Ding, Y. (2017), "Strain/stress engineering on the mechanical and electronic properties of phosphorene nanosheets and nanotubes", RSC Adv., 7(81), 51466-51474. https://doi.org/10.1039/c7ra09668b.
  37. Zhang, X., Wu, T., Jiang, Q., Wang, H., Zhu, H., Chen, Z., Jiang, R., Niu, T., Li, Z., Zhang, Y., Qiu, Z., Yu, G., Li, A., Qiao, S., Wang, H., Yu, Q. and Xie, X. (2019), "Single-crystal graphene wafers: Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750℃ via chemical vapor deposition", Small, 15(22), 1970120. https://doi.org/10.1002/smll.201970120.