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Abstract. A multi-dimensional metric, called a g-metric, as a generaliza-
tion of the G-metric was introduced. We establish some well-known fixed
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1. Introduction

A metric is an important notion not only in mathematics but also in various
other scientific fields. An ordinary metric is required to be generalized in order to
improve the performance of clustering, classification, and information retrieval
processes and also to be able to handle large, complex data sets effectively.

An ordinary metric assigns given two points in a space to a non-negative real
number that represents how far they are. It is natural to generalize the ordinary
metric in order to measure the distance between three or more points. Many
authors, including Gahler [8] and Dhage [6], have been investigating general-
izations of ordinary metrics in this context. Mustafa and Sims [11] have come
up with a more general metric between three points, called a G-metric, that
allows fundamental topological properties to be well embodied. See [9] for more
details. The G-metric was generalized to a metric between n points, called a
g-metric [4] in order to analyze complex high-dimensional data sets, such as
grouped multivariate data.

Definition 1.1. [4] Let R+ be the set of all non-negative real numbers.
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(1) For a non-empty set Ω, a map g : Ωn(=
∏n

i=1 Ω) −→ R+ is called a
g-metric with dimension n (n ≥ 2) on Ω if it satisfies the following
conditions:
(g1) (positive definiteness) g(x1, . . . , xn) = 0 if and only if x1 = · · · = xn,
(g2) (permutation invariancy) g(x1, . . . , xn) = g(xσ(1), . . . , xσ(n)) for any

permutation σ on the set {1, . . . , n},
(g3) (monotonicity) g(x1, . . . , xn) ≤ g(y1, . . . , yn) for all (x1, . . . , xn),

(y1, . . . , yn) ∈ Ωn with {xi | i = 1, . . . , n} ⊊ {yi | i = 1, . . . , n},
(g4) (triangle inequality) for all x1, . . . , xs, y1, . . . , yt, w ∈ Ω with s+ t =

n

g(x1, . . . , xs, y1, . . . , yt) ≤ g(x1, . . . , xs, w, . . . , w︸ ︷︷ ︸
n − s times

) + g(y1, . . . , yt, w, . . . , w︸ ︷︷ ︸
n − t times

).

We call the pair (Ω, g) a g-metric space.
(2) A g-metric on a non-empty set Ω is said to be multiplicity-independent

if the following holds

g(x1, . . . , xn) = g(y1, . . . , yn)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ Ωn with {xi | i = 1, . . . , n} = {yi | i =
1, . . . , n}.

The following are some basic examples of g-metrics.

Example 1.2. [4] Let Ω be a non-empty set, and let (Ω, δ) be a given ordinary
metric space.

(1) The discrete g-metric is the map d : Ωn → R+ defined by

d(x1, . . . , xn) =

{
0 if x1 = · · · = xn,

1 otherwise

for all x1, . . . , xn ∈ Ω.
(2) The diameter g-metric is the map d : Rn

+ −→ R+ given by

d(x1, . . . , xn) = max
1≤i≤n

xi − min
1≤j≤n

xj

for all x1, . . . , xn ∈ R+.
(3) The max g-metric is the map d : Ωn −→ R+ defined by

d(x1, . . . , xn) = max
1≤i,j≤n

δ(xi, xj)

for all x1, . . . , xn ∈ Ω.
(4) The shortest path g-metric is the map d : Ωn −→ R+ given by

d(x1, . . . , xn) = min
π∈Sn

n−1∑
i=1

δ(xπ(i), xπ(i+1))

for all x1, . . . , xn ∈ Ω, where Sn is the symmetric group on the set
{1, . . . , n}.
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Note that d(x1, . . . , xn) is the length of the shortest path connecting
x1, . . . , xn, which is an important notion in computer science and oper-
ational research. See [12] for details.

In this paper, we generalize some well-known fixed point theorems such as the
Banach contraction mapping principle, the weak contraction mapping principle,
and the Ćirić fixed point theorem in a g-metric space.

2. Preliminaries

For a given g-metric space (Ω, g), the open ball centered at x ∈ Ω with radius
r > 0 is

Bg(x, r) = {y ∈ Ω | g(x, y, . . . , y) < r}.
It was shown in [4] that the collection B = {Bg(x, r) | x ∈ Ω, r > 0} forms a
basis for a topology on Ω. The topology generated by the basis B is called the
g-metric topology on Ω.

Lemma 2.1. [4] Let g be a g-metric with dimension n on a non-empty set Ω.
Then the following statements hold:

(1) g(x, . . . , x︸ ︷︷ ︸
s times

, y, . . . , y) ≤ g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) + g(w, . . . , w︸ ︷︷ ︸
s times

, y, . . . , y),

(2) g(x, y, . . . , y) ≤ g(x,w, . . . , w) + g(w, y, . . . , y),
(3) g(x, . . . , x︸ ︷︷ ︸

s times

, w, . . . , w) ≤ sg(x,w, . . . , w) and

g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w) ≤ (n− s)g(w, x, . . . , x),

(4) g(x1, x2, . . . , xn) ≤
n∑

i=1

g(xi, w, . . . , w),

(5)
∣∣g(y, x2, . . . , xn)−g(w, x2, . . . , xn)

∣∣ ≤ max{g(y, w, . . . , w), g(w, y, . . . , y)},
(6)

∣∣g(x, . . . , x︸ ︷︷ ︸
s times

, w, . . . , w)− g(x, . . . , x︸ ︷︷ ︸
s̃ times

, w, . . . , w)
∣∣ ≤ ∣∣s− s̃

∣∣g(x,w, . . . , w),
(7) g(x,w, . . . , w) ≤ (1 + (s− 1)(n− s))g(x, . . . , x︸ ︷︷ ︸

s times

, w, . . . , w).

Definition 2.2. [4] Let (Ω, g) be a g-metric space. Let x ∈ Ω be a point and
{xk} ⊆ Ω be a sequence.

(1) {xk} converges to x, denoted by {xk}
g−→ x, if for all ε > 0 there exists

N ∈ N such that

i1, . . . , in−1 ≥ N =⇒ g(x, xi1 , . . . , xin−1
) < ε.

For such a case, {xk} is said to be convergent in Ω and x is called the
limit of {xk}.

(2) {xk} is said to be Cauchy if for all ε > 0 there exists N ∈ N such that

i1, . . . , in ≥ N =⇒ g(xi1 , . . . , xin) < ε.
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(3) (Ω, g) is complete if every Cauchy sequence in (Ω, g) is convergent in
(Ω, g).

Lemma 2.3. [4] Let (Ω, g) be a g-metric space. Let {xk} ⊆ Ω be a sequence
and x ∈ Ω. Then the following statements are equivalent:

(1) {xk}
g−→ x.

(2) For a given ε > 0, there exists N ∈ N such that xk ∈ Bg(x, ε) for all
k ≥ N .

(3) lim
k1,...,ks→∞

g(xk1
, . . . , xks︸ ︷︷ ︸
s times

, x, . . . , x) = 0 for a fixed 1 ≤ s ≤ n − 1. That

is, for all ε > 0, there exists N ∈ N such that k1, . . . , ks ≥ N =⇒
g(xk1

, . . . , xks
, x, . . . , x) < ε.

Lemma 2.4. [4] Let (Ω, g) be a g-metric space. Let {xk} ⊆ Ω be a sequence.
Then the following statements are equivalent:

(1) {xk} is Cauchy.
(2) g(xk, xk+1, xk+1, . . . , xk+1) −→ 0 as k −→ ∞.
(3) lim

k,ℓ→∞
g(xk, . . . , xk︸ ︷︷ ︸

s times

, xℓ, . . . , xℓ) = 0 for a fixed 1 ≤ s ≤ n− 1.

A g-metric space (Ω, g) is said to have the fixed point property if every con-
tinuous map T : Ω −→ Ω has a fixed point.

Proposition 2.5. The fixed point property is a topological invariant.

Proof. Let (Ω1, g1) and (Ω2, g2) be g-metric spaces, and let h : Ω1 −→ Ω2 be a
homeomorphism. Suppose that Ω1 has the fixed point property.

Let T̃ : Ω2 −→ Ω2 be a continuous map. We consider the map T : Ω1 −→ Ω1

given by T (x) = (h−1 ◦ T̃ ◦ h)(x). Since Ω1 has the fixed point property and T
is continuous, there exists a fixed point x ∈ Ω1 under T, i.e., T (x) = x. Denote
h(x) by y. Then we have

T̃ (y) = T̃ (h(x)) = (h ◦ h−1 ◦ T̃ ◦ h)(x) = h(T (x)) = h(x) = y,

implying that y is a fixed point under T̃ . Therefore, Ω2 has the fixed point
property. □

Lemma 2.6. If (Ω, g) is a g-metric space, then the map g is jointly continuous

in all n variables, i.e., if for each i = 1, . . . , n, {x(k)
i }k∈N is a sequence in Ω such

that {x(k)
i } g−→ xi, then {g(x(k)

1 , . . . , x
(k)
n )}−→{g(x1, . . . , xn)} as k −→ ∞.

Proof. Assume that {x(k)
i } g−→ xi as k −→ ∞ for each i = 1, . . . , n. For a given

ε > 0, there exists Ni ∈ N such that g(x
(k)
i , xi, . . . , xi) <

ε

n
if k ≥ Ni by Lemma

2.3 (3). We let N = max{N1, . . . , Nn}. Then by the conditions (g2), (g4), if
k ≥ N , then

g(x
(k)
1 , . . . , x(k)

n ) ≤
n∑

i=1

g(x
(k)
i , xi, . . . , xi) + g(x1, x2, . . . , xn) < ε+ g(x1, x2, . . . , xn).
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In a similar way, we have g(x1, x2, . . . , xn) < ε+ g(x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ).

□

3. Fixed point theorems in a g-metric space

Fixed point theorems on a G-metric space have extensively been studied (see
[2] and references therein). The interested reader can also refer to [1, 3, 7, 10].
In this section we generalize several fixed point theorems on a g-metric space
under the g-metric topology.

The following is a generalization of the Banach contractive mapping principle
in a g-metric space.

Theorem 3.1 (Banach contractive mapping principle in a g-metric space). Let
(Ω, g) be a complete g-metric space and let T : Ω −→ Ω be a map such that there
exists λ ∈ [0, 1) satisfying

g(T (x1), T (x2), . . . , T (xn)) ≤ λg(x1, x2, . . . , xn) for all x1, . . . , xn ∈ Ω.

Then T has a unique fixed point in Ω.

Proof. Let y0 be an arbitrary point in Ω. Set yk+1 = T (yk) for all k ∈ N.
(Existence of a fixed point) If ym+1 = ym for some m ∈ N, then ym is

a fixed point of T . We assume that yk+1 ̸= yk for all k ∈ N. Then, by the
condition (3.1) it follows that

g(yk+1, yk+2, yk+2, . . . , yk+2) ≤ λg(yk, yk+1, yk+1, . . . , yk+1) for all k ∈ N.

So, by induction we have g(yk, yk+1, yk+1, . . . , yk+1) ≤ λkg(y0, y1, y1, . . . , y1),
implying

g(yk, yk+1, yk+1, . . . , yk+1) −→ 0 as k −→ ∞.

Thus, {yk} is a Cauchy sequence in (Ω, g) by Lemma 2.4. Since (Ω, g) is com-

plete, there exists y ∈ Ω such that {yk}
g−→ y. It follows that

g(yk+1, T (y), T (y), . . . , T (y)) ≤ λg(yk, y, y, . . . , y).

As k −→ ∞, by Lemma 2.6

g(y, T (y), T (y), . . . , T (y)) ≤ λg(y, y, y, . . . , y) = 0.

Therefore, T (y) = y by the positive definiteness for the g-metric.
(Uniquness of a fixed point) Suppose that y, ỹ are distinct fixed points.

Then

g(ỹ, y, y, . . . , y) = g(T (ỹ), T (y), T (y), . . . , T (y))

≤ λg(ỹ, y, y, . . . , y) < g(ỹ, y, y, . . . , y),

which is a contradiction. Thus, y = ỹ. □

Definition 3.2. Let (Ω, g) be a g-metric space. A map T : Ω → Ω is said to be
weakly contractive if

g(T (x1), . . . , T (xn)) < g(x1, . . . , xn)
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for which any two of x1, . . . , xn ∈ Ω are distinct.

Proposition 3.3. Let (Ω, g) be a g-metric space. Suppose that T : Ω −→ Ω is
weakly contractive. Then the map f : Ω −→ R+ given by f(x) = g(x, T (x), . . . ,
T (x)) is continuous.

Proof. Let x ∈ Ω. We need to show that for any ε > 0 there exists δ >
0 such that

∣∣g(y, T (y), . . . , T (y)) − g(x, T (x), . . . , T (x))
∣∣ < ε if y ∈ Bg(x, δ).

We let δ =
ε

n
. For y ∈ Bg(x, δ), we first assume that g(y, T (y), . . . , T (y)) ≤

g(x, T (x), . . . , T (x)). Then

|g(x, T (x), . . . , T (x))− g(y, T (y), . . . , T (y))|
= g(x, T (x), . . . , T (x))− g(y, T (y), . . . , T (y))

≤ g(x, y, . . . , y) + g(y, T (x), . . . , T (x))− g(y, T (y), . . . , T (y)) (by Lemma 2.1 (2))

≤ g(x, y, . . . , y) + g(T (y), T (x), . . . , T (x)) (by Lemma 2.1 (2))

≤ g(x, y, . . . , y) + g(y, x, . . . , x) (by the weak contractivity of T )

≤ g(x, y, . . . , y) + (n− 1)g(x, y, . . . , y) (by Lemma 2.1 (3))

< nδ = ε.

In a similar way, it can be proved that |g(x, T (x), . . . , T (x))−g(y, T (y), . . . , T (y))|
< ε holds when g(y, T (y), . . . , T (y)) ≥ g(x, T (x), . . . , T (x)). Hence, f is contin-
uous. □

Theorem 3.4 (Weak contraction mapping principle in a g-metric space). Let
T be a weakly contractive map on a compact g-metric space (Ω, g). Then T has
a unique fixed point.

Proof. The map f : Ω −→ R+ defined by f(x) = g(x, T (x), . . . , T (x)) is contin-
uous by Proposition 3.3. Since Ω is compact, the continuous map f attains its
minimum at some x̄ ∈ Ω. If x̄ ̸= T (x̄), then

g(x̄, T (x̄), . . . , T (x̄)) = min
x∈Ω

g(x, T (x), . . . , T (x))

≤ g(T (x̄), T (T (x̄)), . . . , T (T (x̄)))

< g(x̄, T (x̄), . . . , T (x̄)),

which is a contradiction. So, x̄ is a fixed point of T . The uniqueness argument
follows exactly same as in the proof of Theorem 3.1. □

We next generalize the Ćirić fixed point theorem [5] in a g-metric space. Let
(Ω, g) be a g-metric space and T : Ω −→ Ω a map. For each x ∈ Ω, we denote

O(x,N) = {x, T (x), T 2(x), . . . , TN (x)} and O(x,∞) = {x, T (x), T 2(x), . . .},
where T k+1 = T ◦ T k for all k ∈ N and T 0 is the identity map on Ω.

Definition 3.5. (1) A g-metric space Ω is said to be T -orbitally complete
if every Cauchy sequence contained in O(x,∞) for some x ∈ Ω is con-
vergent in Ω.
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(2) A map T : Ω −→ Ω is called a quasi-contraction if there exists λ ∈ [0, 1)
such that for all x1, . . . , xn ∈ Ω,

g(T (x1), . . . , T (xn)) ≤
λ

n
max

[
{g(x1, . . . , xn)}

∪ {g(xi, T (xj), . . . , T (xj)) | i, j = 1, . . . , n}
]
.

For A ⊆ Ω, we denote sup{g(a1, . . . , an) | a1, . . . , an ∈ A} by µ(A).

Lemma 3.6. Suppose that T : Ω −→ Ω is a quasi-contraction on a g-metric
space (Ω, g). Then for each x ∈ Ω the following inequalities hold:

(1) g(T k1(x), . . . , T kn(x)) ≤ λ

n
µ(O(x,N)) for all k1, . . . , kn ∈ {1, . . . , N}.

(2) µ(O(x,∞)) ≤ n

1− λ
g(x, T (x), . . . , T (x)).

Proof. (1) Let x ∈ Ω. Since {T k1(x), T k1−1(x), . . . , T kn(x), T kn−1(x)} is a subset
of O(x,N) and the map T is a quasi-contraction, there exists λ ∈ [0, 1) such that

g(T k1(x), . . . , T kn(x)) = g(TT k1−1(x), . . . , TT kn−1(x))

≤ λ

n
max

[
{g(T k1−1(x), . . . , T kn−1(x))}

∪ {g(T ki−1(x), T kj (x), . . . , T kj (x)) | i, j = 1, . . . , n}
]

≤ λ

n
µ(O(x,N)).

(2) Let x ∈ Ω. Since the sequence {µ(O(x,N))}N∈N is monotonically increas-
ing, µ(O(x,∞)) = sup{µ(O(x,N)) | N ∈ N}. For a fixed positive integer N0,
the statement (1) implies that there exist k1, k2, . . . , kn−1 ∈ {0, 1, . . . , N0} such
that g(x, T k1(x), . . . , T kn−1(x)) = µ(O(x,N0)). Without loss of generality, we
can assume that k1 ≤ k2 ≤ · · · ≤ kn−1. If kn−1 = 0 (i.e. ki = 0 for all i), then
µ(O(x,N0)) = g(x, x, . . . , x) = 0. Suppose that there exists 1 ≤ j ≤ n − 1 such
that kj ̸= 0 and kj−1 = 0. Then by Lemma 2.1 (4) and the statement (1) we
have

g(x, T k1(x), . . . ,T kn−1(x)) ≤ g(x, T (x), . . . , T (x)) +

n−1∑
i=1

g(T ki(x), T (x), . . . , T (x))

= jg(x, T (x), . . . , T (x)) +

n−1∑
i=j

g(T ki(x), T (x), . . . , T (x))

≤ jg(x, T (x), . . . , T (x)) + (n− j)
λ

n
µ(O(x,N0))

= jg(x, T (x), . . . , T (x)) + (n− j)
λ

n
g(x, T k1(x), . . . , T kn−1(x)).
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Thus, it follows that

µ(O(x,N0)) = g(x, T k1(x), . . . , T kn−1(x))

≤ j

1− n−j
n λ

g(x, T (x), . . . , T (x))

≤ n

1− λ
g(x, T (x), . . . , T (x)).

Since N0 was arbitrarily chosen, µ(O(x,∞)) ≤ n

1− λ
g(x, T (x), . . . , T (x)). □

Theorem 3.7 (Ćirić fixed point theorem in a g-metric space). Let Ω be a g-
metric space. Suppose that Ω is T -orbitally complete and T : Ω −→ Ω is a
quasi-contraction. Then the following are true:

(1) {TN (x)} g−→ y as N −→ ∞.
(2) T has a unique fixed point y in Ω.

(3) g(TN (x), y, . . . , y) ≤ λN

nN−1(1− λ)
g(x, T (x), . . . , T (x)).

Proof. (1) Let x ∈ Ω. Since T is a quasi-contraction, by Lemma 3.6 (1) it
follows that

g(T k1(x), . . . , T kn(x)) = g(TT k1−1(x), T k2−k1+1T k1−1(x), . . . , T kn−k1+1T k1−1(x))

≤ λ

n
µ(O(T k1−1(x), kn − k1 + 1))

for positive integers k1, k2, . . . , kn with k1 < k2 < · · · < kn. By Lemma
3.6 (1), there exist ℓ1, . . . , ℓn−1 ∈ {0, . . . , kn − k1 + 1} (without loss of
generality, we assume that ℓ1 ≤ · · · ≤ ℓn−1) such that

µ(O(T k1−1(x), kn − k1 + 1)) = g(T k1−1(x), T l1T k1−1(x), . . . , T ln−1T k1−1(x)).

Then by Lemma 3.6 (1), we have

g(T k1−1(x),T ℓ1T k1−1(x), . . . , T ℓn−1T k1−1(x))

= g(TT k1−2(x), T ℓ1+1T k1−2(x), . . . , T ℓn−1+1T k1−2(x))

≤ λ

n
µ(O(T k1−2(x), ℓn−1 + 1)) ≤ λ

n
µ(O(T k1−2(x), kn − k1 + 2)).

By repeating process, we eventually obtain the following inequalities:

g(T k1(x), . . . , T kn(x)) ≤ λ

n
µ(O(T k1−1(x), kn − k1 + 1))

≤
(
λ

n

)2

µ(O(T k1−2(x), kn − k1 + 2))

...

≤
(
λ

n

)k1

µ(O(x, kn)).
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Then it follows from Lemma 3.6 (2) that

g(T k1(x), . . . , T kn(x)) ≤
(
λ

n

)k1 n

1− λ
g(x, T (x), . . . , T (x)). (⋆)

The sequence of iterates {TN (x)} is Cauchy because
(λ
n

)k1

tends to 0

as k1 −→ ∞. Therefore, since Ω is T -orbitally complete, {TN (x)} has
the limit y in Ω.

(2) (Existence of a fixed point) We shall show that the limit y is a fixed
point of T. Let us consider the following inequalities:

g(y, T (y), . . . , T (y)) ≤ g(y, TN+1(y), . . . , TN+1(y)) + g(TTN (y), T (y), . . . , T (y))

≤ g(y, TN+1(y), . . . , TN+1(y)) +
λ

n
max

{
g(TN (y), y, . . . , y),

g(TN (y), TN+1(y), . . . , TN+1(y)), g(y, T (y), . . . , T (y)),

g(TN (y), T (y), . . . , T (y)), g(y, TN+1(y), . . . , TN+1(y))
}

≤ g(y, TN+1(y), . . . , TN+1(y)) +
λ

n

(
g(TN (y), y, . . . , y)

+ g(TN (y), TN+1(y), . . . , TN+1(y)) + g(y, T (y), . . . , T (y))

+ g(y, TN+1(y), . . . , TN+1(y))
)

(by Theorem 2.1 (2)).

Then for every positive integer N, we have

g(y, T (y), . . . , T (y))

≤ λ

n− λ

[
g(TN (y), y, . . . , y) + g(TN (y), TN+1(y), . . . , TN+1(y))

+
(n
λ
+ 1

)
g(y, TN+1(y), . . . , TN+1(y))

]
.

Note that for any x ∈ Ω, {TN (x)} g−→ y. Thus, g(y, T (y), . . . , T (y)) = 0,
i.e., T (y) = y. Therefore, y is a fixed point of T.

(Uniqueness of a fixed point) Suppose that y and ỹ are fixed
points under T, i.e., T (y) = y and T (ỹ) = ỹ. The quasi-contractivity of
T gives rise to the following:

g(ỹ, y, . . . , y) = g(T (ỹ), T (y), . . . , T (y))

≤ λ

n
max

{
g(ỹ, y, . . . , y), g(ỹ, T (ỹ), . . . , T (ỹ)), g(y, T (y), . . . , T (y)),

g(ỹ, T (y), . . . , T (y)), g(y, T (ỹ), . . . , T (ỹ))
}

≤ λ

n
max

{
g(ỹ, y, . . . , y), g(y, ỹ, . . . , ỹ)

}
≤ λ

n
max

{
g(ỹ, y, . . . , y), (n− 1)g(ỹ, y, . . . , y)

}
(by Theorem 2.1 (3))
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=
λ

n
(n− 1)g(ỹ, y, . . . , y) ≤ λg(ỹ, y, . . . , y).

Since 0 ≤ λ < 1, it holds that g(ỹ, y, . . . , y) = 0. Therefore, y = ỹ as
desired.

(3) Taking the limit as k2 −→ ∞ on the both side of (⋆), one can obtain
the inequality

g(T k1(x), y, . . . , y) ≤
(
λ

n

)k1
(

n

1− λ

)
g(x, T (x), . . . , T (x)),

as desired.
□
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