Acknowledgement
This research was supported by Chungbuk National University Korea National University Development Project (2021).
References
- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl. 26 (1979), 203-241. https://doi.org/10.1016/0024-3795(79)90179-4
- R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics, Princeton University Press, 2007.
- R. Bhatia, T. Jain, and Y. Lim, Strong convexity of sandwiched entropies and related optimization problems, Rev. Math. Phys. 30 (2018), 1850014.
- J.I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon. 34 (1989), 341-348.
- S. Furuichi, Inequalities for Tsallis relative entropy and generalized skew information, Linear Multilinear Algebra 59 (2011), 1143-1158. https://doi.org/10.1080/03081087.2011.574624
- R. Frank and E. Lieb, Monotonicity of a relative R'enyi entropy, J. Math. Phys. 54 (2013), 122201.
- F. Hansen and G.K. Pedersen, Jensens inequality for operators and Lowners theorem, Math. Ann. 258 (1982), 229241.
- F. Hiai, Log-majorization related to Renyi divergences, Linear Algebra Appl. 563 (2019), 255-276. https://doi.org/10.1016/j.laa.2018.11.004
- S. Kullback and R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1951), 79-86. https://doi.org/10.1214/aoms/1177729694
- M. Muller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Renyi entropies: a new definition, some properties, J. Math. Phys. 54 (2013), 122203.
- D. Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23 (1986), 57-65. https://doi.org/10.1016/0034-4877(86)90067-4
- C. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal 27 (1948), 379-423 https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
- M. Wilde, A. Winter and D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Renyi relative entropy, Comm. Math. Phys. 331 (2014), 593-622. https://doi.org/10.1007/s00220-014-2122-x