DOI QR코드

DOI QR Code

Dynamic analysis of a functionally graded tapered rotating shaft under thermal load via differential quadrature finite elements method

  • Fethi, Hadjoui (IS2M Laboratory, Faculty of Technology, University of Tlemcen) ;
  • Ahmed, Saimi (IS2M Laboratory, Faculty of Technology, University of Tlemcen) ;
  • Ismail, Bensaid (IS2M Laboratory, Faculty of Technology, University of Tlemcen) ;
  • Abdelhamid, Hadjoui (IS2M Laboratory, Faculty of Technology, University of Tlemcen)
  • Received : 2022.04.26
  • Accepted : 2023.01.06
  • Published : 2023.01.25

Abstract

The present study proposes a theoretical and numerical investigation on the dynamic response behaviour of a functional graded (FG) ceramic-metal tapered rotor shaft system, by the differential quadrature finite elements method (DQFEM) to identify the natural frequencies for modelling and analysis of the structure with suitable validations. The purpose of this paper is to explore the influence of heat gradients on the natural frequency of rotation of FG shafts via three-dimensional solid elements, as well as a theoretical examination using the Timoshenko beam mode, which took into account the gyroscopic effect and rotational inertia. The functionally graded material's distribution is described by two distribution laws: the power law and the exponential law. To simulate varied thermal conditions, radial temperature distributions are obtained using the nonlinear temperature distribution (NLTD) and exponential temperature distribution (ETD) approaches. This work deals with the results of the effect on the fundamental frequencies of different material's laws gradation and temperature gradients distributions. Attempts are conducted to identify adequate explanations for the behaviours based on material characteristics. The effect of taper angle and material distribution on the dynamic behaviour of the FG conical rotor system is discussed.

Keywords

Acknowledgement

We acknowledge with grateful thanks the support by the laboratory of mechanical and material systems engineering in university of Tlemcen, as well as the General Directorate of Scientific Research and Technological Development of the Ministry of Higher Education of Algeria.

References

  1. Aboudi, J., Pindera, M.J. and Arnold, S.M. (1999), "Higher-order theory for functionally graded materials", Compos. Part B: Eng., 30(8), 777-832. https://doi.org/10.1016/S1359-8368(99)00053-0.
  2. Afsar, A.M. and Go, J. (2010), "Finite element analysis of thermoelastic field in a rotating FGM circular disk", Appl. Math. Model., 34(11), 3309-3320. https://doi.org/10.1016/j.apm.2010.02.022.
  3. Afshari, H. and Irani Rahaghi, M. (2018), "Whirling analysis of multi-span multi-stepped rotating shafts", J. Brazil. Soc. Mech. Sci. Eng., 40(9), 424. https://doi.org/10.1007/s40430-018-1351-x.
  4. Afshari, H., Torabi, K. and Jafarzadeh Jazi, A. (2022), "Exact closed form solution for whirling analysis of Timoshenko rotors with multiple concentrated masses", Mech. Bas. Des. Struct. Mach., 50(3), 969-992. https://doi.org/10.1080/15397734.2020.1737112.
  5. Ahmed, S., Abdelhamid, H., Ismail, B. and Ahmed, F. (2020), "An differential quadrature finite element and the differential quadrature hierarchical finite element methods for the dynamics analysis of on board shaft", Eur. J. Comput. Mech., 29(4-6), 1. https://doi.org/10.13052/ejcm1779-7179.29461.
  6. Akbas, S.D. (2014), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51. https://doi.org/10.24107/ijeas.251224.
  7. Assem, H., Hadjoui, A. and Saimi, A. (2022), "Numerical analysis on the dynamics behavior of FGM rotor in thermal environment using h-p finite element method", Mech. Bas. Des. Struct. Mach., 50(11), 3925- 3948. https://doi.org/10.1080/15397734.2020.1824791.
  8. Berthelot, J.M. (1996), Composite Materials, Mechanical Behavior and Analysis of Structures, Second Edition, Masson.
  9. Bose, A. and Sathujoda, P. (2020), "Effect of thermal gradient on vibration characteristics of a functionally graded shaft system", Math. Model. Eng. Prob., 7(2), 212-222. https://doi.org/10.18280/mmep.070207.
  10. Boukhalfa, A. (2014), "Dynamic analysis of a spinning functionally graded material shaft by the p-version of the finite element method", Lat. Am. J. Solid. Struct., 11(11), 2018-2038. https://doi.org/10.1590/S1679-78252014001100007.
  11. Boukhalfa, A. and Hadjoui, A. (2010), "Free vibration analysis of an embarked rotating composite shaft using the hp-version of the FEM", Lat. Am. J. Solid. Struct., 7(2), 105-141. https://doi.org/10.1590/S1679- 78252010000200002.
  12. Bouzidi, I., Hadjoui, A. and Fellah, A. (2021), "Dynamic analysis of functionally graded rotor-blade system using the classical version of the finite element method", Mech. Bas. Des. Struct. Mach., 49(7), 1080- 1108. https://doi.org/10.1080/15397734.2019.1706558.
  13. Cheng, J., Xu, H. and Yan, A. (2006), "Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect", Mech. Bas. Des. Struct. Mach., 34(1), 25-47. https://doi.org/10.1080/15367730500501587.
  14. Ding, J., Chu, L., Xin, L. and Dui, G. (2018), "Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position", Mech. Bas. Des. Struct. Mach., 46(2), 225-237. https://doi.org/10.1080/15397734.2017.1329020.
  15. Gayen, D., Chakraborty, D. and Tiwari, R. (2017a), "Finite element analysis for a functionally graded rotating shaft with multiple breathing cracks", Int. J. Mech. Sci., 134, 411-423. https://doi.org/10.1016/j.ijmecsci.2017.10.027.
  16. Gayen, D., Chakraborty, D. and Tiwari, R. (2017b), "Whirl frequencies and critical speeds of a rotor-bearing system with a cracked functionally graded shaft-Finite element analysis", Eur. J. Mech.-A/Solid., 61, 47- 58. https://doi.org/10.1016/j.euromechsol.2016.09.003.
  17. Gayen, D., Chakraborty, D. and Tiwari, R. (2018), "Free vibration analysis of functionally graded shaft system with a surface crack", J. Vib. Eng. Technol., 6(6), 483-494. https://doi.org/10.1007/s42417-018-0065-9.
  18. Gayen, D. and Roy, T. (2014), "Finite element based vibration analysis of functionally graded spinning shaft system", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 228(18), 3306-3321. https://doi.org/10.1177/0954406214527923.
  19. Gayen, D., Tiwari, R., & Chakraborty, D. (2021). "Thermo-mechanical analysis of a rotor-bearing system having a functionally graded shaft with transverse breathing cracks", Proceedings of the 6th National Symposium on Rotor Dynamics, Springer, Singapore.
  20. Gayen, D., Tiwari, R. and D,C. (2019), "Static and dynamic analyses of cracked functionally graded structural components: A review", Compos. Part B: Engineering, 173, 106982. https://doi.org/10.1016/j.compositesb.2019.106982.
  21. Hirai, T. and Chen, L. (1999a), "Recent and prospective development of functionally graded materials in Japan", Mater. Sci. Forum, 308, 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509.
  22. Holt, J.B., Koizumi, M., Hirai, T., & Munir, Z.A. (1993), Ceramic Transactions: Functionally Gradient Materials, Volume 34 (No. CONF-921128-), American Ceramic Society, Westerville, OH, USA.
  23. Hua, L. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  24. Irani Rahagi, M., Mohebbi, A. and Afshari, H. (2016), "Longitudinal-torsional and two plane transverse vibrations of a composite timoshenko rotor", J. Solid Mech., 8(2), 418-434.
  25. Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4.
  26. Librescu, L., Oh, S.Y. and Song, O. (2005), "Thin-walled beams made of functionally graded materials and operating in a high temperature environment: Vibration and stability", J. Therm. Stress., 28(6-7), 649-712. https://doi.org/10.1080/01495730590934038.
  27. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  28. Chang, M.Y., Chen, J.K., & Chang, C.Y. (2004), "A simple spinning laminated composite shaft model", Int. J. Solid. Struct., 41(3-4), 637-662. https://doi.org/10.1016/j.ijsolstr.2003.09.043.
  29. Pouretemad, A., Torabi, K. and Afshari, H. (2019a), "DQEM analysis of free transverse vibration of rotating non-uniform nanobeams in the presence of cracks based on the nonlocal Timoshenko beam theory", SN Appl. Sci., 1(9), 1092. https://doi.org/10.1007/s42452-019-1130-z.
  30. Pouretemad, A., Torabi, K. and Afshari, H. (2019b), "Free vibration analysis of a rotating non-uniform nanocantilever carrying arbitrary concentrated masses based on the nonlocal timoshenko beam using DQEM", INAE Lett., 4(1), 45-58. https://doi.org/10.1007/s41403-019-00065-x.
  31. Przybylowicz, P.M. (2005), "Stability of actively controlled rotating shaft made of functionally graded material", J. Theor. Appl. Mech., 43(3), 609-630.
  32. Rao, D.K. and Roy, T. (2016), "Vibration analysis of functionally graded rotating shaft system", Procedia Eng., 144, 775-780. https://doi.org/10.1016/j.proeng.2016.05.084.
  33. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
  34. Rene-Jean, G. (1988), Vibrations des Structures, Vol. 69, La Collection R&D d'EDF Chez EYROLLES.
  35. Saimi, A. and Hadjoui, A. (2016), "An engineering application of the h-p version of the finite elements method to the dynamics analysis of a symmetrical on-board rotor", Eur. J. Comput. Mech., 25(5), 388- 416. https://doi.org/10.1080/17797179.2016.1245597.
  36. Torabi, K., Afshari, H. and Haji Aboutalebi, F. (2014), "A DQEM for transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with general boundary conditions", Comput. Math. Appl., 67(3), 527-541. https://doi.org/10.1016/j.camwa.2013.11.010.
  37. Torabi, K., Afshari, H. and Najafi, H. (2017), "Whirling analysis of axial-loaded multi-step timoshenko rotor carrying concentrated masses", J. Solid Mech., 9(1), 138-156.
  38. Touloukian, Y.S. (1966), Thermophysical Properties of High Temperature Solid Materials, Thermophysical and Electronic Properties Information Analysis Center Lafayette. https://apps.dtic.mil/sti/pdfs/AD0649950.pdf.
  39. Uemura, S. (2003), "The activities of FGM on new application", Mater. Sci. Forum, 423-425, 1-10. https://doi.org/10.4028/www.scientific.net/MSF.423-425.1.
  40. Xing, Y. and Liu, B. (2009), "High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain", Int. J. Numer. Meth. Eng., 80(13), 1718-1742. https://doi.org/10.1002/nme.2685.
  41. Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), "Proceedings of the first international symposium on functionally gradient materials", Sendai, Japan.
  42. Zahi, R., Refassi, K. and Habib, A. (2018), "Dynamic calculation of a tapered shaft rotor made of composite material", Adv. Aircraft Spacecraft Sci., 5(1), 51-71. https://doi.org/10.12989/aas.2018.5.1.051.