Acknowledgement
The author would like to thank the anonymous referee who provided useful and detailed comments on a previous version of the manuscript.
References
- Daewook Kim, Mathematical modelling for the axially moving membrane with internal time delay, East Asian Math. J. 37 (2016), 141-147. https://doi.org/10.7858/EAMJ.2021.012
- F. Li, Z. Zhao and Y. Chen, Global existence and uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, J Nonlinear Analysis: Real World Applications, 12 (2011), 1759-1773. https://doi.org/10.1016/j.nonrwa.2010.11.009
- F. Li and Z. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Real World Applications, 74 (2011), 3468-3477. https://doi.org/10.1016/j.na.2011.02.033
- C. F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151- 165.
- J. L. Lions, On some question on boundary value problem of mathematical physics, 1, in: G.M. de La Penha, L. A. Medeiros (Eds.), Contemporary Developments of Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam, 1978.
- M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, Journal of Mathematical Analysis and Applications, 238 (1999), 418-428. https://doi.org/10.1006/jmaa.1999.6517
- M. Aassila and D. Kaya, Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014. https://doi.org/10.1016/j.camwa.2011.08.011
- M. Aassila and D. Kaya, Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617. https://doi.org/10.1016/j.na.2012.01.018
- J. Limaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with non-homogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820. https://doi.org/10.1016/j.jmaa.2008.02.051
- J. Limaco, H. R. Clark, and L. A. Medeiros, Stabilization for the viscoelastic Kirchhoff type equation with nonlinear source, East Asian Math. J. 32 (2016), 117-128. https://doi.org/10.7858/EAMJ.2016.012
- J. Limaco, H. R. Clark, and L. A. Medeiros, Asymptotic behavior for the viscoelastic Kirchhoff type equation with an internal time-varying delay term, East Asian Math. J. 32 (2016), 399-412. https://doi.org/10.7858/EAMJ.2016.030