DOI QR코드

DOI QR Code

EXPONENTIAL BEHAVIOR FOR SOLUTIONS OF NONLINEAR HYPERBOLIC SYSTEM WITH EPSILON PERTURBATION

  • Daewook, Kim (Department of Mathematics and Education Seowon University)
  • Received : 2022.12.30
  • Accepted : 2023.01.17
  • Published : 2023.01.31

Abstract

In this paper, we study the nonlinear hyperbolic system with epsilon perturbation stt - div[c(x)∇s] + (ε - 1)st = |s|γs. Under the conditions of c, γ and other assumptions, we prove the exponential behavior rates of the modified energy perturbation.

Keywords

Acknowledgement

The author would like to thank the anonymous referee who provided useful and detailed comments on a previous version of the manuscript.

References

  1. Daewook Kim, Mathematical modelling for the axially moving membrane with internal time delay, East Asian Math. J. 37 (2016), 141-147.  https://doi.org/10.7858/EAMJ.2021.012
  2. F. Li, Z. Zhao and Y. Chen, Global existence and uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, J Nonlinear Analysis: Real World Applications, 12 (2011), 1759-1773.  https://doi.org/10.1016/j.nonrwa.2010.11.009
  3. F. Li and Z. Zhao, Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping, Nonlinear Analysis: Real World Applications, 74 (2011), 3468-3477.  https://doi.org/10.1016/j.na.2011.02.033
  4. C. F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151- 165. 
  5. J. L. Lions, On some question on boundary value problem of mathematical physics, 1, in: G.M. de La Penha, L. A. Medeiros (Eds.), Contemporary Developments of Continuum Mechanics and Partial Differential Equations, North-Holland, Amsterdam, 1978. 
  6. M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, Journal of Mathematical Analysis and Applications, 238 (1999), 418-428.  https://doi.org/10.1006/jmaa.1999.6517
  7. M. Aassila and D. Kaya, Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions, Computers and Mathematics with Applications 62 (2011), 3004-3014.  https://doi.org/10.1016/j.camwa.2011.08.011
  8. M. Aassila and D. Kaya, Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications 75 (2012), 3598-3617.  https://doi.org/10.1016/j.na.2012.01.018
  9. J. Limaco, H. R. Clark, and L. A. Medeiros, Vibrations of elastic string with non-homogeneous material, Journal of Mathematical Analysis and Applications 344 (2008), 806-820.  https://doi.org/10.1016/j.jmaa.2008.02.051
  10. J. Limaco, H. R. Clark, and L. A. Medeiros, Stabilization for the viscoelastic Kirchhoff type equation with nonlinear source, East Asian Math. J. 32 (2016), 117-128.  https://doi.org/10.7858/EAMJ.2016.012
  11. J. Limaco, H. R. Clark, and L. A. Medeiros, Asymptotic behavior for the viscoelastic Kirchhoff type equation with an internal time-varying delay term, East Asian Math. J. 32 (2016), 399-412. https://doi.org/10.7858/EAMJ.2016.030