참고문헌
- Ai-min, Y. and Ming, Y. (2004), "Solution of generalized coordinate for warping for naturally curved and twisted beams", Appl. Math. Mech., 25(10), 1166-1175. https://doi.org/10.1007/BF02439869.
- Amara, K., Tounsi, A. and Mechab, I. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Mech., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029.
- Ansari, R., Faghih Shojaei, M., Shahabodini, A. and Bazdid-Vahdati, M. (2015), "Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach", Compos. Struct., 131, 753-764. http://doi.org/10.1016/j.compstruct.2015.06.027.
- Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., 4(4), 265. https://doi.org/10.12989/anr.2016.4.4.265.
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., 5(4), 393. https://doi.org/10.12989/anr.2017.5.4.393.
- Bastanfar, M., Hosseini, S.A., Sourki, R. and Khosravi, F. (2019), "Flexoelectric and surface effects on a cracked piezoelectric nanobeam: Analytical resonant frequency response", Arch. Mech. Eng., 66, 417. http://doi.org/10.24425/ame.2019.131355.
- Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279. https://doi.org/10.12989/anr.2018.6.3.279.
- Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S.A.H. and Shaghaghi, G.R. (2015), "Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams", J. Mech. Sci. Technol., 29(3), 1207-1215. https://doi.org/10.1007/s12206-015-0234-7.
- Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. http://doi.org/10.1016/j.amc.2011.12.090.
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. http://doi.org/10.1016/j.compstruct.2012.11.039.
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. http://doi.org/10.1016/j.compstruct.2012.09.030.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science & Business Media.
- Hajianmaleki, M. and Qatu, M.S. (2012), "Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions", Compos. Part B: Eng., 43(4), 1767-1775. http://doi.org/10.1016/j.compositesb.2012.01.019.
- Hamidi, B.A., Hosseini, S.A., Hassannejad, R. and Khosravi, F. (2020), "Theoretical analysis of thermoelastic damping of silver nanobeam resonators based on Green-Naghdi via nonlocal elasticity with surface energy effects", Eur. Phys. J. Plus, 135(1), 35. http://doi.org/10.1140/epjp/s13360-019-00037-8.
- Hosseini, S.A. and Khosravi, F. (2020), "Exact solution for dynamic response of size dependent torsional vibration of CNT subjected to linear and harmonic loadings", Adv. Nano Res., 8(1), 25. https://doi.org/10.12989/anr.2020.8.1.025.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Khosravi, F. and Hosseini, S.A. (2020), "On the viscoelastic carbon nanotube mass nanosensor using torsional forced vibration and Eringen's nonlocal model", Mech. Bas. Des. Struct. Mach., 50(3), 1030-1053. https://doi.org/10.1080/15397734.2020.1744001.
- Khosravi, F., Hosseini, S.A. and Norouzi, H. (2020), "Exponential and harmonic forced torsional vibration of single-walled carbon nanotube in an elastic medium", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(10), 1928-1942. http://doi.org/10.1177/0954406220903341.
- Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Torsional dynamic response of viscoelastic SWCNT subjected to linear and harmonic torques with general boundary conditions via Eringen's nonlocal differential model", Eur. Phys. J. Plus, 135(2), 1-23. https://doi.org/10.1140/epjp/s13360-020-00207-z.
- Kurtaran, H. (2015), "Geometrically nonlinear transient analysis of thick deep composite curved beams with generalized differential quadrature method", Compos. Struct., 128, 241-250. http://doi.org/10.1016/j.compstruct.2015.03.060.
- Kurtaran, H. (2015), "Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method", Compos. Struct., 131, 821-831. http://doi.org/10.1016/j.compstruct.2015.06.024.
- Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7.
- Ma, H., Gao, X.L. and Reddy, J. (2010), "A nonclassical Reddy-Levinson beam model based on a modified couple stress theory", Int. J. Multisc. Comput. Eng., 8(2), 167-180. http://doi.org/10.1615/IntJMultCompEng.v8.i2.30.
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. http://doi.org/10.1016/S0020-7225(02)00210-0.
- Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31. https://doi.org/10.12989/anr.2016.4.1.031.
- Seifoori, S. and Liaghat, G.H. (2013), "Low velocity impact of a nanoparticle on nanobeams by using a nonlocal elasticity model and explicit finite element modeling", Int. J. Mech. Sci., 69, 85-93. http://doi.org/10.1016/j.ijmecsci.2013.01.030.
- Simsek, M. and Yurtcu, H. (2012), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. http://doi.org/10.1016/j.compstruct.2012.10.038.
- Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1. https://doi.org/10.12989/anr.2013.1.1.001.
- Wang, B., Deng, Z.. and Zhang, K. (2013), "Nonlinear vibration of embedded single-walled carbon nanotube with geometrical imperfection under harmonic load based on nonlocal Timoshenko beam theory", Appl. Math. Mech., 34, 269-280. https://doi.org/10.1007/s10483-013-1669-8.
- Xu, X.. and Deng, Z.. (2013), "Surface effects of adsorption-induced resonance analysis on micro/nanobeams via nonlocal elasticity", Appl. Math. Mech., 34, 37-44. http://doi.org/10.1007/s10483-013-1651-9.
- Ye, T., Jin, G., Ye, X. and Wang, X. (2015), "A series solution for the vibrations of composite laminated deep curved beams with general boundaries", Compos. Struct., 127, 450-465. http://doi.org/10.1016/j.compstruct.2015.03.020.
- Zhu, L. and Zhao, Y.. (2008), "Exact solution for warping of spatial curved beams in natural coordinates", Appl. Math. Mech., 29, 933-941. https://doi.org/10.1007/s10483-008-0712-x.
- Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51(1), 252-260. http://doi.org/10.1016/j.commatsci.2011.07.021.