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Abstract 

 
The network function virtualization (NFV) uses virtualization technology to separate 
software from hardware. One of the most important challenges of NFV is the resource 
management of virtual network functions (VNFs). According to the dynamic nature of NFV, 
the resource allocation of VNFs must be changed to adapt to the variations of incoming 
network traffic. However, the significant delay may be happened because of the reallocation 
of resources. In order to balance the performance between delay and quality of service, this 
paper firstly made a compromise between VNF migration and energy consumption. Then, 
the long short-term memory (LSTM) was utilized to forecast network traffic. Also, the 
asymmetric loss function for LSTM (LO-LSTM) was proposed to increase the predicted 
value to a certain extent. Finally, an experiment was conducted to evaluate the performance 
of LO-LSTM. The results demonstrated that the proposed LO-LSTM can not only reduce 
migration times, but also make the energy consumption increment within an acceptable 
range. 
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1. Introduction 

The traditional deployment mode for network services is based on dedicated hardware. 
However, it has problems such as the high cost of replacing network devices, long 
deployment cycles of new network services and low resource utilization rate. The rapid 
development of network services has considerably increased the problems existing on the 
traditional deployment mode [1]. The emergence of network function virtualization (NFV) 
solves the problems existing on the current network service mode. The network services are 
software-based, and the software is deployed on the universal hardware. Users can flexibly 
and efficiently rent services on demand. Here, sub-service functions run as software, and the 
software in turn runs on general hardware devices. Virtual network functions (VNFs) are 
embedded in the software. This new approach to service function chain (SFC) deployment 
faces many new challenges with respect to resource allocation and reconstruction 
[2][3][4][5]. Herein, we focus on network traffic prediction in an NFV environment to 
guarantee a low frequency of passive migration and sacrifice some energy consumption. 

Frequent migration in an NFV environment occurs by ignoring network traffic changes 
when the flow rate of network traffic is large. However, a small flow rate of network traffic 
can lead to unnecessary energy consumption due to low node usage. The usual solution is to 
divide each day into multiple time slices. It obtains the resource demand according to the 
peak network traffic in each time slice, and actively performs migration before each time 
slice starts [6][7][8][9]. One fundamental problem is to predict the peak network traffic for 
the next time slice [10]. If the prediction value of network traffic is higher than the real value, 
there will be excess energy consumption; otherwise, it may lead to passive migration within 
the time slice. To reduce the unpredictable passive migration within the time slice, we 
amplify the prediction value of the network traffic to a certain extent. To reduce energy 
consumption, the amplification coefficient of the predicted value should not be too high. 
Therefore, how to predict the network traffic for the next time slice becomes one crucial 
problem in the NFV environment. 

For this paper, the main contributions are as follows:  
(1) We believe that dynamic scaling needs to be considered in NFV to meet Quality of 

Service. According to the characteristics of network, dynamic and adaptive techniques are 
needed to improve the performance of resource management methods. Before allocating 
network traffic, we need to estimate network traffic and set the estimated value to a larger 
size to reduce migration times and ensure service quality.  

(2) According to the above reasons, we design a network traffic prediction method 
called LO-LSTM. It elastically amplifies network traffic to reduce the passive migration and 
sacrifice the energy consumption as little as possible.  

(3) We have implemented LO-LSTM and presented extensive evaluations. Experiments 
with the changing network loads show that LO-LSTM substantially reduces passive 
migration, and energy consumption can be sacrificed according to pre-set weight parameters 
to optimize the overall goal. 

2. Related Research 

Network traffic trends have been characterized by time series [11][12][13][14]. Network 
traffic prediction uses time series for modelling and analysis. The network traffic prediction 
model can be divided into stationary and non-stationary categories. 
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The stationary model can be divided into two types, i.e. the short correlation and long 
correlation models. Short correlation models include the Poisson model, Markov model [15] 
and auto-regressive moving average model (ARMA model). Long correlation models include 
the fractional difference auto-regressive moving average model (FARMA model). The above 
stationary traffic model lays a solid foundation for network traffic prediction. However, 
owing to the sudden and uneven network traffic distribution, accurately describing the 
characteristics of network traffic changes using a single stationary model is difficult. 

With the development of machine learning (ML) technologies, boosting, support vector 
machine (SVM) and other ML methods have gradually been applied to network traffic 
prediction. Furthermore, with the development of neural networks researchers frequently use 
back propagation and Elman neural networks to predict network traffic. Experimental results 
show that these methods effectively improve the accuracy of network traffic prediction 
compared with traditional methods. Azzouni et al. proposed a LSTM recurrent neural 
network model [16], which considers the time correlation between network traffic and 
historical data to predict network traffic. The above research laid a solid foundation for 
network traffic prediction. However, all these methods work in the traditional network 
environment. When applied to the NFV environment, the problems of VNF migration caused 
by unpredictable network traffic still arise. 

Recently, network traffic and cloud resource prediction methodologies have been 
proposed in the NFV environment. Tang et al. [17] proposed a network traffic prediction 
method for scaling resources in NFV environment using network traffic modelling with an 
ARMA process. The predicted network traffic values were obtained by minimizing the loss. 
Some solutions are based on time series forecasting with LSTM recurring neural networks 
[18], predicting host load in cloud infrastructures. The study by Rahman [19] was based on 
ML classification procedures, and the classification objective was to minimize operational 
cost and QoS degradation. Vincenzo Eramo et al. [20] proposed a solution for NFV 
environments resource orchestration in which the different values of the over-provisioning 
and under-provisioning cost was considered. Liu et al. [21] proposed a complete stateful 
scaling system that efficiently reduces flow-level latency and achieves near-optimal resource 
usage to deal with time-varying loads in NFV environment. Mahsa Moradi et al. [22] 
analyzed and compared three algorithms of machine learning. 

The main contribution of our work is to propose a network traffic prediction technique. 
The technique is aware of the difficulty in accurately predicting traffic, therefore it employs 
high network traffic prediction values to reduce passive migration. We minimize the 
probability of insufficient resource allocation by increasing the predicted traffic value to a 
certain extent. This objective is achieved by minimizing an asymmetric loss function, and the 
loss function is characterized by considering the penalties for over-provisioning and 
under-provisioning and making the loss value increase faster for under-provisioning. 

3. Problem Statement 

3.1 Problem Description 

In the NFV environment, users request resources based on their requirements, service 
providers construct service function chains (SFCs) for users based on their requirements and 
the substrate network status according to predefined rules and policies. Each sub-service 
requires certain resources. The dynamic change in network traffic produces a constant 
change in resource demands [23][24][25]. An increase in network traffic increases the 
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resource demand for SFC. When the substrate network cannot carry the network load, VNFs 
migrate to ensure QoS. Similarly, a decrease in network traffic decreases resource demands. 
When the resource utilization of the physical node is low, service providers migrate VNFs 
and shut down nodes for energy saving. 

VNFs migrate passively when the available resources cannot feed the VNFs or the 
end-to-end delay exceeds the delay boundary, leading to unpredictable network status 
changes and end-to-end delays. We should predict network traffic in advance and actively 
migrate VNF to reduce the passive migration. 

3.2 Network Model 

1. Substrate Network 
We represent the substrate network as a graph ( )ee LN ,  including NFV enabled nodes eN  
and physical links eL . Each physical node e

e
i Nn ∈  has properties such as processing 

capacity ( )e
inCPU . Each physical link ( )e

i
e
i

e
i nnl 1, +=  ( e

e
i Ll ∈ , e

e
i Nn ∈  and e

e
i Nn ∈+1 ) has 

attributes such as link bandwidth ( )e
ilBW .  

2. SFC Request 
A set of SFC requests is defined as qR . Each SFC t  ( qRt∈ ) can communicate through the 
service path. Each SFC t  has a source node ( )ti , a destination node ( )to , and a sequence 
of VNF nodes ( )tNv . The end-to-end delay of SFC t  cannot exceed the delay boundary 
( )tδ . SFC t  has a set of virtual links ( )tLv , including the virtual link between the source 

node ( )ti  and the first VNF, the virtual link between the previous VNF and the subsequent 
VNF, and the virtual link between the last VNF and the destination node ( )to .  

3. Resource Demand 
Network traffic realr  changes dynamically with time. The greater the network traffic, the 
greater the resource requirements [23][24][25]. 

 The CPU requirement is approximately linearly correlated with network traffic [23] 
[24] [25]. Define CPU demand as (1): 

( ) ( )v
i

ratiov
i

real nqCPUrnqCPU ReRe ⋅=                            (1) 

Where ( )v
i

real nqCPURe  is the CPU requirement of VNF v
in  under the current 

traffic; ( )v
inqCPURe  is the CPU requirement of VNF v

in  under the baseline traffic; 
ratior  is the amplification factor.  

Define ratior  as follows: 

 
0r

rr
real

ratio =                            (2) 

Where 0r  is the baseline traffic, we set the baseline traffic based on initial resource 

requirement; realr is the current network traffic. 
Bandwidth requirement ( )tqBW realRe  of SFC t  is approximately linearly correlated 

with amplification factor ratior  [23][24][25] : 
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( ) ( )tqBWrtqBW ratioreal ReRe ⋅=                             (3) 
Where ( )tqBWRe  is the bandwidth requirement under the baseline traffic. 
4. Latency 

End-to-end latency is also related to network traffic, and the larger the network traffic load, 
the longer the latency [26][27]. The latency is approximately linearly related to the network 
traffic amplification factor. 

5. Energy Consumption 
Both nodes and links consume energy. As the energy consumption of link is relatively small, 
we only consider the energy consumption of node [28]. Node energy consumption is 
approximately linearly correlated with CPU utilization [29]. 

( ) ( ) ( )e
i

e
i nCPUutilpppnPW ⋅−+= minmaxmin                    (4) 

Where minp  is the minimum node energy consumption, and maxp  is the peak value 

of node energy consumption, ( )e
inCPUutil  is the CPU utilization of node e

in . 

3.3 Optimization Objective 

The migration should satisfy constraints 1~4, and take energy-saving, passive migration 
reducing, and migration failure reducing as optimization objectives. Define the general 
objective as follows: 

( ) ( ) ( )( )qqq TmigrateFailTmigrateNFTrunningPWMinimize ___ 321 ⋅+⋅+∆⋅ ηηη     (5) 

Where 1η , 2η , and 3η  are constant coefficients, ( )qTrunningPW _∆  is the 
difference between the assigned and required energy in time slice qT . 

The number of passive migration ( )qTmigrateNF _  is shown in (6): 

( ) ( ) ( )
( )

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

⋅=
q v

v
i e

e
j e

e
kRt tNn Nn Nn

e
k

e
j

v
iqq nnntZtTYTmigrateNF ,,,,_            (6) 

Where ( )tTY q ,  is 1 when SFC t  migrates within time slice qT , otherwise, it is 0. 

( )e
k

e
j

v
i nnntZ ,,,

 is 1 when VNF v
in  in SFC t  migrates from physical node e

jn  to 

physical node 
e
kn ; otherwise, it is 0. 

The number of passive migration failures ( )qTmigrateFail _  is shown in (7): 
( ) ( ) ( )∑

∈
⋅=

qRt
qqq tTFtTYTmigrateFail ,,_                   (7) 

Where ( )tTF q ,  is 1 when the migration fails within time slice qT ; otherwise, it is 0. 
All constraints are described as follows: 

Constraint 1: each VNF v
in  in SFC t  is only embedded on one physical node. 

( )
( ) 1,,

,

=

∈∀∈∀

∑
∈ e

e
j Nn

e
j

v
i

v
v
iq

nntX

tNnRt
                       (8) 
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Where ( )e
i

v
j nntX ,,

 is 1 when VNF v
jn  in SFC t  is mapped to physical node e

in ; 

Otherwise, ( )e
i

v
j nntX ,,  is 0. 

Constraint 2: the CPU usage cannot exceed its capacity. 

( ) ( )
( )

( )e
j

Rt tNn

e
j

v
i

v
i

e
e
j

nCPUnntXnqCPU

Nn

q v
v
i

≤⋅

∈∀

∑ ∑
∈ ∈

,,Re                   (9) 

Where ( )e
jnCPU  is the CPU capacity of physical node e

jn . 
Constraint 3: the bandwidth usage cannot exceed its capacity. 

( ) ( )
( )

( )e
j

Rt tLl

e
j

v
i

e
e
j

lBWlltZtqBW

Ll

q v
v
i

≤⋅

∈∀

∑ ∑
∈ ∈

,,Re                      (10) 

Where ( )e
jlBW  is the bandwidth capacity of physical link e

jl ; ( )tqBWRe  is the 

bandwidth demand for SFC t ; ( )e
j

v
i lltZ ,,  is 1 when virtual link 

v
il  in SFC t  is mapped 

to physical link e
jl ; otherwise, it is 0. 

Constraint 4: the end to end latency of each SFC cannot exceed the latency boundary 
( )tδ . 

( ) ( )ttD

Rt q

δ≤

∈∀
                          (11) 

Where ( )tD  is the end to end delay of SFC t . 

4. Network Traffic Prediction 

We divide one day into many time slices, and predict the peak network traffic for the next 
time slice. To reduce the probability of passive migration within the time slice, we amplify 
the prediction value. In addition, to reduce energy consumption, the amplification value 
should not be too large. To learn the changing rules of network traffic and the 
interdependence between adjacent time slices, we propose a network traffic prediction 
method based on LSTM. 

4.1 LSTM Model 

Set up L  intervals and perform active VNF migration when time slices alternate. The 
neural network architecture based on LSTM is shown in Fig. 1. 
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Fig. 1. Neural network architecture based on LSTM 

 

Each part is described as follows: 
i) Input 
Each input i

qINPUT  includes four components: 

 the actual peak value of network traffic 1−i
qr  in time slice qT  on day 1−iD  

 the actual peak value of network traffic 2−i
qr  in time slice qT  on day 2−iD  

 the actual peak value of network traffic 7−i
qr  in time slice qT  on day 7−iD  

 the actual peak value of network traffic i
qr 1−  in time slice 1−qT  on day iD  

ii) Encoding Block 
The encoding block can standardize the input data, as shown in (12): 

std
meanr

norr
i
qi

q
−

=_                                (12) 

Where std  is the standard deviation, mean  is the average value. 
iii) Dense Layer 
The output dimension of LSTM is the same as LSTM units. We use the dense layer to 

convert the output dimension into the required size.  
iv) Denormalization Block 
This module performs denormalization as shown in (13):  

meanstdnorrr i
q

i
q +⋅= _                       (13) 

v) Output 

The output value is the peak value of network traffic i
qr  in time slice qT  on day iD . 

vi) LSTM layers 
The more layers, the stronger the learning ability. However, if the LSTM has too many 

layers, it is easy to over-fit. Generally, the neural network has no more than three layers. 
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4.2 Optimization of Loss Function 

We optimize the loss function for LSTM, which is called LO-LSTM. The optimization 
objectives include energy-saving, reducing passive migration and migration failure. We 
should take these factors into account to calculate the loss. 

1. Calculation of Loss 
When the predicted value is higher than the real value, the loss value is only related to 

energy consumption. Otherwise, it is only associated with migration frequency and mapping 
failures. Therefore, we calculate loss as follows: 

( ) ( )
( ) ( )( ) ( )qqqq

qqq
i
q

oprITmigrateFailTmigrateNF

ropITrunningPWloss

−⋅⋅+⋅+

−⋅∆⋅=

__

_

32

1

ηη

η
          (14) 

Where ( ) 0=xI  when 0<x ; and ( ) 1=xI  when 0>x .   
2. Loss of Energy Consumption 

( )qTrunningPW _∆  is the difference between predicted value and actual value of energy 
consumption in time slice qT , and we use the predicted value to reallocate resources. It can 
be calculated as follows: 

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )( )
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( ) ( )

( ) ( )
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( ) ( )
( )
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( ) ( )
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( )

( ) ( )
( )
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( ) ( )
( ) ( ) ( )

( )

( )

( ) ( ) ( )
( ) ( )
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( )















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⋅−⋅−⋅−=

















 −⋅⋅

⋅−⋅−=





























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
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


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(15)
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Where 0t  is the start of time slice qT , and 1t  is the end of time slice qT ; 

( )e
inCPUutil  is the CPU utilization of physical node e

in  under predicted network traffic; 

( )e
i

' nCPUutil  is the CPU utilization of physical node e
in  under actual network traffic; 

( )e
i

assign nCPU  is the total CPU allocation on physical node e
in ; ( )e

i
request nCPU  is the total 

CPU requirement on physical node e
in ; ( )v

j
assign nqCPURe  is the CPU allocation for VNF 

v
jn  under forecasting network traffic; ( )v

j
request nqCPURe  is the CPU requirement of VNF 

v
jn  under actual network traffic. 

i
qassignratio _  is the amplification factor according to predicted network traffic : 

0

_
_

r
assignr

assignratio
i
qi

q =
                    (16)

 

Where i
qassignr _  is the predicted peak value of network traffic in time slice qT  of 

day iD . 
i
qrealratio _  is the amplification factor according to actual network traffic: 

0

_
_

r
realr

realratio
i
qi

q =
                      (17)

 

Where i
qrealr _  is the actual peak value of network traffic in time slice qT  of day 

iD . 
Further, calculate ( )qTrunningPW _∆  as follows: 

( )

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

( ) ( )i
q

i
q

Nn
e
i

v
j

Rt tNn

e
i

v
j

Nn
e
i

v
j
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e
i

v
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q
i
q

q
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nCPU

nqCPUnntX

r
pptt

nCPU

nqCPUnntX

r
realrassignr

pptt
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e
e
i

q v
v
j

e
e
i

q v
v
j

__

Re,,
1

Re,,
__

_

0
minmax011

0
minmax011

−⋅

















 ⋅

⋅⋅−⋅−⋅=

















 ⋅

⋅











 −
⋅−⋅−⋅=

∆

∑

∑ ∑

∑

∑ ∑

∈

∈ ∈

∈

∈ ∈

α

α

(18) 
 

According to (18), ( )qTrunningPW _∆  and ( )i
q

i
q realrassignr __ − are linearly 

dependent. 
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3. Loss of Migration 
If the allocated resource is lower than the required resource, there will be more passive 

migration within the time slice. The greater the gap, the higher the frequency of passive 
migration. The growth rate (slope of the curve) of migration may be more prominent than the 
growth rate of energy consumption. Therefore, we define the loss of migration as shown in 
(19): 

( ) ( ) ( )232 ____ i
q

i
qqq realrassignrTmigrateFailTmigrateNF −⋅=⋅+⋅ θηη

     (19) 

Where θ  is a constant coefficient. 
In summary, we define the loss as follows: 

( ) ( )
( ) ( )qq

assignreal

qq
realassigni

q

oprIrr

ropIrrloss

−⋅−⋅+

−⋅−⋅=

2max_max_

max_max_

θ

γ

            (20) 

Where γ  is constant coefficient, and the loss function is in time slice qT  on day iD . 
4. Loss Function 
We use mean square error (MSE) as the loss function: 

( )∑ ∑
= =

⋅
×

=
M

i

L

q

i
qloss

LM
functionloss

1 1

21_
                (21) 

Where M  is the total number of days, and L  is the total number of time slices in one 
day. 

4.3 Algorithm Description 

The training and the prediction process is shown below: 
Table 1. Network traffic prediction algorithm based on LO-LSTM 

Inputs：LSTM parameters, substrate network on which many SFCs have been embedded, 
benchmark value of network traffic, historical data of network traffic, and other 
parameters 
outputs：peak value of network traffic within the next time slice 
1. Divide the data set into train data, validation data, and test data 
2. Build the LSTM model 
3. Initialize the parameters of the LSTM model 
4. For 1,...,1,0 −= iteNi  do  /*training*/ 

5.    For each train data ( )train
i

train
i yx ,  do    

6.       Fit LSTM model for *x  with train data train
ix  

7.       Evaluate the loss value using *x  and train
iy  according to (21) 

8.       Use the loss value to propagate back 
9.       Use the optimizer to step through and update parameters in LSTM model 
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10.   For each validation data ( )validation
i

validation
i yx ,  do 

11.      Fit the LSTM model for *x  with validation data validation
ix  

12.      Evaluate the loss value using *x  and validation
iy  according to (21) 

13.      If the loss value is less than the historical values 
14.        Save this LSTM network model 
15. Fetch the optimal LSTM model /*predicting*/ 

16. For each test data ( )test
i

test
i yx ,  do 

17.   Fit the optimal LSTM model for *x  with test data test
ix  

18.   Evaluate the loss value using *x  and test
iy  according to (21) 

In terms of complexity from bottom to top, considering iteN  as the number of 
iterations, and trainN  as the number of train data, the complexity of the train process is in 

the order of ( )trainite NNO ⋅ . Considering validationN  as the number of validation data, the 

complexity of the validation process is in the order of ( )validationite NNO ⋅ . Considering testN  
as the number of test data, the complexity of the predicting process is in the order of 
( )testNO . 

5. Experimental Simulation and Analysis 

5.1 Experimental Environment Setting 

We performed the experiment in Python, created the LSTM neural network in Pytorch, and 
conducted it on a computer with Intel Core I5-8250U 1.8 ghz CPU and 8 GB memory. The 
star topology network structure is consistent with [30], containing ten servers, one switch, 
and ten links. The properties of each server node and physical link are shown in Table 2 
below. 

Table 2. Host and link Properties 

Host 
Properties 
Host ID 

1 2 3 4 5 6 7 8 9 10 

Node CPUs 10 9 8 7 10 9 9 9 8 9 
Link BW 1000 1000 500 400 500 600 700 800 900 600 

Link Latency 30 50 10 50 50 50 50 50 50 50 
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We set up eight different types of VNF in the experiment, set resource requests for each 
VNF according to [30], and showed the VNF resource demand in Table 3. We randomly 
select many VNFs from the eight types of VNF to generate an SFC request. We generated 
six SFC requests in the experiment. To test the performance of the algorithm under different 
network loads, we changed the length of the SFC requests. The length of the time slice is one 
hour in the experiment. 

 
Table 3. VNF Properties 

VNFD Properties 
 

VNFD ID 
ID 

1 2 3 4 5 6 7 8 

CPUs Required 4 3 3 2 2 2 1 1 

BW Required 10 8 6 2 2 2 2 2 

Processing Latency 10 8 6 2 2 2 2 2 

 
In (20), γ  and θ  are constant coefficients. To increase the punishment for passive 

migration, they are set to 0.2 and 0.8 respectively. In (5), 1η , 2η , and 3η  are constant 
coefficients. To increase the penalty for passive migration, they are set to 0.2, 0.3, and 0.5. In 
(4), we set minp  to 0.2, and set maxp  to 0.8. 

We adopted the Adam Optimizer algorithm for optimizing the iterative updating method 
of weight parameters. The main parameters of LSTM are shown in Table 4. 

 
Table 4. Main parameters of LSTM 

Hyper parameter Value 
Learning Rate 0.0001 

Batch Size 8 
LSTM Layers 2 

LSTM Hidden Size 50 
Embedding Size 10 
Training Count 1000 

Input Size 4 
Output Size 1 
Discard Rate 0.2 

Time Slice Count for One Day 24 
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5.2 Contrast Algorithm 

To evaluate the effectiveness of the method, we selected the original LSTM and the 
ABCNN-LSTM [21] as the comparison algorithms. Both of them compute loss with the 
difference between predicted value of network traffic and actual value of network traffic, 
without considering the operation of the NFV network. 

5.3 Evaluation Index  

The related methods are compared in the following five aspects: 
① predicted value of network traffic； 
② loss according to (21)； 
③ energy consumption increment. If the predicted value of network traffic is higher 

than the actual value, set the energy consumption increment to ( )qTrunningPW _∆ ; otherwise, 
set it to 0.  

④ number of passive migration according to (6); 
⑤ number of migration failures according to (7). 

5.4 Analysis of Experimental Results 

We adjust the network load by changing the length of SFC, and compare three groups of 
experiments: ① the length of SFC is six, and the results are shown in Fig. 2; ② the length 
of SFC is three, and the results are shown in Fig. 3; ③ the length of SFC is a random value 
between two and six, and the results are given in Fig. 4. 
 
 

 
(a)                                    (b) 
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(c)                                   (d) 

 
                 (e)                                  (f) 

Fig. 2. Experiment results when the length of SFC is six 
 
 

 
(a)                                 (b) 
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(c)                                 (d) 

 
                   (e)                                  (f) 

Fig. 3. Experiment results when the length of SFC is three 
 
 

 
(a)                                    (b) 
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(c)                                    (d) 

 

                  (e)                                  (f) 
Fig. 4. Experiment results when the length of SFC is between two and six 

 
As shown in Fig. 2 (a), Fig. 3 (a), and Fig. 4 (a), predicted value of network traffic by 

the LO-LSTM algorithm is higher than other algorithms in general. The LO-LSTM 
algorithm computes loss function based on three aspects, including energy consumption, 
migration frequency, and migration failure, and it tends to amplify the predicted value in 
order to reduce migration. 

As shown in Fig. 2 (b), Fig. 3 (b), and Fig. 4 (b), the value of the loss function drops 
rapidly during training and validating. Therefore, the three algorithms all have great 
convergence performance. 

As shown in Fig. 2 (c), Fig. 3 (c), and Fig. 4 (c), the LO-LSTM algorithm has a higher 
energy consumption increment. The predicted value of the LO-LSTM is higher than other 
algorithms. Therefore, the energy consumption increment of the LO-LSTM algorithm is 
higher than other algorithms. 

As shown in Fig. 2 (d), Fig. 3 (d), and Fig. 4 (d), the LO-LSTM algorithm has a lower 
passive migration frequency. The predicted value of network traffic is higher than the actual 
value, and it is less likely to occur passive migration within the time slice. 

As shown in Fig. 2 (e), Fig. 3 (e), and Fig. 4 (e), the LO-LSTM algorithm has fewer 
passive migration failures within the time slice. The passive migration is less, which makes 
the migration failures fewer. 
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Fig. 2 (f), Fig. 3 (f), and Fig. 4 (f) show the weighted sum of all indices. The indices 
include energy consumption increment, the number of passive migration, the number of 
migration failures. We combine the multiple factors according to (5). As shown in the figures, 
the LO-LSTM algorithm performs better under different network loads.  

6. Conclusion 

We introduced LO-LSTM, an efficient network traffic prediction method to achieve 
migration reducing. We added factors including energy consumption and migration into the 
loss function of the LSTM model. We implemented LO-LSTM and evaluated it. Our 
experiment results show that LO-LSTM significantly achieves efficient passive migration 
reducing for VNFs. This paper provides an effective solution of network traffic prediction for 
migration reducing in NFV environment, which can give better quality of service. 

In future research, we will try to solve the VNF online migration problem in the NFV 
environment, and reduce passive migration and save energy as far as possible. 
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