Acknowledgement
This study was supported by a research grant from Pusan National University Yangsan Hospital in 2022.
References
- Berrios-Torres SI, Umscheid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 2017; 152: 784-91. Erratum in: JAMA Surg 2017; 152: 803. https://doi.org/10.1001/jamasurg.2017.0904
- European Centre for Disease Prevention and Control (ECDC). Surveillance of surgical site infections and prevention indicators in European hospitals. HAI-Net SSI protocol, version 2.2 [Internet]. Stockholm: ECDC; 2017. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/HAI-Net-SSI-protocol-v2.2.pdf.
- Skube SJ, Hu Z, Arsoniadis EG, Simon GJ, Wick EC, Ko CY, et al. Characterizing surgical site infection signals in clinical notes. Stud Health Technol Inform 2017; 245: 955-9.
- World Health Organization. Global guidelines for the prevention of surgical site infection, second edition [Internet]. Geneva: World Health Organization; 2018. Available at: https://apps.who.int/iris/bitstream/handle/10665/277399/9789241550475-eng.pdf?sequence=1&isAllowed=y.
- Sepkowitz KA. One hundred years of Salvarsan. N Engl J Med 2011; 365: 291-3. https://doi.org/10.1056/NEJMp1105345
- Williams KJ. The introduction of 'chemotherapy' using arsphenamine - the first magic bullet. J R Soc Med 2009; 102: 343-8. https://doi.org/10.1258/jrsm.2009.09k036
- Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 2010; 1: 134. https://doi.org/10.3389/fmicb.2010.00134
- Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol 2019; 51: 72-80. https://doi.org/10.1016/j.mib.2019.10.008
- Singh SB, Young K, Silver LL. What is an "ideal" antibiotic? Discovery challenges and path forward. Biochem Pharmacol 2017; 133: 63-73. https://doi.org/10.1016/j.bcp.2017.01.003
- Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33: 300-5. https://doi.org/10.4103/joacp.JOACP_349_15
- Tsantes AG, Papadopoulos DV, Vrioni G, Sioutis S, Sapkas G, Benzakour A, et al. Spinal infections: an update. Microorganisms 2020; 8: 476. https://doi.org/10.3390/microorganisms8040476
- Buckman SA, Turnbull IR, Mazuski JE. Empiric antibiotics for sepsis. Surg Infect (Larchmt) 2018; 19: 147-54. https://doi.org/10.1089/sur.2017.282
- Ahmed A, Azim A, Gurjar M, Baronia AK. Current concepts in combination antibiotic therapy for critically ill patients. Indian J Crit Care Med 2014; 18: 310-4. https://doi.org/10.4103/0972-5229.132495
- Bassetti M, Righi E. New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections. Curr Opin Crit Care 2015; 21: 402-11. https://doi.org/10.1097/MCC.0000000000000235
- Schmid A, Wolfensberger A, Nemeth J, Schreiber PW, Sax H, Kuster SP. Monotherapy versus combination therapy for multidrug-resistant Gramnegative infections: systematic review and metaanalysis. Sci Rep 2019; 9: 15290. https://doi.org/10.1038/s41598-019-51711-x
- Shaffer WO, Baisden JL, Fernand R, Matz PG; North American Spine Society. An evidence-based clinical guideline for antibiotic prophylaxis in spine surgery. Spine J 2013; 13: 1387-92. https://doi.org/10.1016/j.spinee.2013.06.030
- Follett KA, Boortz-Marx RL, Drake JM, DuPen S, Schneider SJ, Turner MS, et al. Prevention and management of intrathecal drug delivery and spinal cord stimulation system infections. Anesthesiology 2004; 100: 1582-94. https://doi.org/10.1097/00000542-200406000-00034
- Ierano C, Nankervis JM, James R, Rajkhowa A, Peel T, Thursky K. Surgical antimicrobial prophylaxis. Aust Prescr 2017; 40: 225-9. https://doi.org/10.18773/austprescr.2017.073
- Shawky Abdelgawaad A, El Sadik MHM, Hassan KM, El-Sharkawi M. Perioperative antibiotic prophylaxis in spinal surgery. SICOT J 2021; 7: 31. https://doi.org/10.1051/sicotj/2021029
- Alexander JW, Solomkin JS, Edwards MJ. Updated recommendations for control of surgical site infections. Ann Surg 2011; 253: 1082-93. https://doi.org/10.1097/SLA.0b013e31821175f8
- Schaison G, Graninger W, Bouza E. Teicoplanin in the treatment of serious infection. J Chemother 2000; 12 Suppl 5: 26-33. https://doi.org/10.1080/1120009X.2000.11782315
- Schwartz RH, Southerland W, Urits I, Kaye AD, Viswanath O, Yazdi C. Successful reimplantation of spinal cord stimulator one year after device removal due to infection. Surg J (N Y) 2021; 7: e11-3. https://doi.org/10.1055/s-0040-1722179
- Deer TR, Provenzano DA, Hanes M, Pope JE, Thomson SJ, Russo MA, et al. The Neurostimulation Appropriateness Consensus Committee (NACC) recommendations for infection prevention and management. Neuromodulation 2017; 20: 31-50. Erratum in: Neuromodulation 2017; 20: 516. https://doi.org/10.1111/ner.12635
- Mok JM, Pekmezci M, Piper SL, Boyd E, Berven SH, Burch S, et al. Use of C-reactive protein after spinal surgery: comparison with erythrocyte sedimentation rate as predictor of early postoperative infectious complications. Spine (Phila Pa 1976) 2008; 33: 415-21. https://doi.org/10.1097/BRS.0b013e318163f9ee
- Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805-12. Erratum in: J Clin Invest 2003; 112: 299.
- Black S, Kushner I, Samols D. C-reactive protein. J Biol Chem 2004; 279: 48487-90. https://doi.org/10.1074/jbc.R400025200
- Du Clos TW. Function of C-reactive protein. Ann Med 2000; 32: 274-8. https://doi.org/10.3109/07853890009011772
- Hoeller S, Roch PJ, Weiser L, Hubert J, Lehmann W, Saul D. C-reactive protein in spinal surgery: more predictive than prehistoric. Eur Spine J 2021; 30: 1261-9. https://doi.org/10.1007/s00586-021-06782-8
- Bray C, Bell LN, Liang H, Haykal R, Kaiksow F, Mazza JJ, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ 2016; 115: 317-21.
- Zheng S, Wang Z, Qin S, Chen JT. Usefulness of inflammatory markers and clinical manifestation for an earlier method to diagnosis surgical site infection after spinal surgery. Int Orthop 2020; 44: 2211-9. https://doi.org/10.1007/s00264-020-04567-0
- Jonsson B, Soderholm R, Stromqvist B. Erythrocyte sedimentation rate after lumbar spine surgery. Spine (Phila Pa 1976) 1991; 16: 1049-50. https://doi.org/10.1097/00007632-199109000-00006
- Zare A, Sabahi M, Safari H, Kiani A, Schmidt MH, Arjipour M. Spinal surgery and subsequent ESR and WBC changes pattern: a single center prospective study. Korean J Neurotrauma 2021; 17: 136-47. https://doi.org/10.13004/kjnt.2021.17.e33
- Takahashi J, Shono Y, Hirabayashi H, Kamimura M, Nakagawa H, Ebara S, et al. Usefulness of white blood cell differential for early diagnosis of surgical wound infection following spinal instrumentation surgery. Spine (Phila Pa 1976) 2006; 31: 1020-5. https://doi.org/10.1097/01.brs.0000214895.67956.60
- Kraft CN, Kruger T, Westhoff J, Luring C, Weber O, Wirtz DC, et al. CRP and leukocyte-count after lumbar spine surgery: fusion vs. nucleotomy. Acta Orthop 2011; 82: 489-93. https://doi.org/10.3109/17453674.2011.588854
- Choi MK, Kim SB, Kim KD, Ament JD. Sequential changes of plasma C-reactive protein, erythrocyte sedimentation rate and white blood cell count in spine surgery: comparison between lumbar open discectomy and posterior lumbar interbody fusion. J Korean Neurosurg Soc 2014; 56: 218-23. https://doi.org/10.3340/jkns.2014.56.3.218
- Aljabi Y, Manca A, Ryan J, Elshawarby A. Value of procalcitonin as a marker of surgical site infection following spinal surgery. Surgeon 2019; 17: 97-101. https://doi.org/10.1016/j.surge.2018.05.006
- Nie H, Jiang D, Ou Y, Quan Z, Hao J, Bai C, et al. Procalcitonin as an early predictor of postoperative infectious complications in patients with acute traumatic spinal cord injury. Spinal Cord 2011; 49: 715-20. https://doi.org/10.1038/sc.2010.190
- Deguchi M, Shinjo R, Yoshioka Y, Seki H. The usefulness of serum amyloid A as a postoperative inflammatory marker after posterior lumbar interbody fusion. J Bone Joint Surg Br 2010; 92: 555-9. https://doi.org/10.1302/0301-620X.92B4.22807
- Sack GH Jr. Serum amyloid A - a review. Mol Med 2018; 24: 46. https://doi.org/10.1186/s10020-018-0047-0
- Chahoud J, Kanafani Z, Kanj SS. Surgical site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med (Lausanne) 2014; 1: 7. https://doi.org/10.3389/fmed.2014.00007
- Amanai E, Nakai K, Saito J, Hashiba E, Miura T, Morohashi H, et al. Usefulness of presepsin for the early detection of infectious complications after elective colorectal surgery, compared with C-reactive protein and procalcitonin. Sci Rep 2022; 12: 3960. https://doi.org/10.1038/s41598-022-06613-w
- Lee S, Song J, Park DW, Seok H, Ahn S, Kim J, et al. Diagnostic and prognostic value of presepsin and procalcitonin in non-infectious organ failure, sepsis, and septic shock: a prospective observational study according to the Sepsis-3 definitions. BMC Infect Dis 2022; 22: 8. https://doi.org/10.1186/s12879-021-07012-8
- Giavarina D, Carta M. Determination of reference interval for presepsin, an early marker for sepsis. Biochem Med (Zagreb) 2015; 25: 64-8. https://doi.org/10.11613/BM.2015.007
- Zhu X, Li K, Zheng J, Xia G, Jiang F, Liu H, et al. Usage of procalcitonin and sCD14-ST as diagnostic markers for postoperative spinal infection. J Orthop Traumatol 2022; 23: 25. https://doi.org/10.1186/s10195-022-00644-9
- Koakutsu T, Sato T, Aizawa T, Itoi E, Kushimoto S. Postoperative changes in presepsin level and values predictive of surgical site infection after spinal surgery: a single-center, prospective observational study. Spine (Phila Pa 1976) 2018; 43: 578-84. https://doi.org/10.1097/BRS.0000000000002376
- Zou Q, Wen W, Zhang XC. Presepsin as a novel sepsis biomarker. World J Emerg Med 2014; 5: 16-9. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.002
- Cheng MP, Stenstrom R, Paquette K, Stabler SN, Akhter M, Davidson AC, et al. Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis: a diagnostic study. Ann Intern Med 2019; 171: 547-54. https://doi.org/10.7326/m19-1696
- Opota O, Croxatto A, Prod'hom G, Greub G. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 2015; 21: 313-22. https://doi.org/10.1016/j.cmi.2015.01.003
- Khan ZA, Siddiqui MF, Park S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel) 2019; 9: 49. https://doi.org/10.3390/diagnostics9020049
- Centers for Disease Control and Prevention (CDC). How antimicrobial resistance happens [Internet]. Washington, DC: CDC; 2020. Available at: https://www.cdc.gov/drugresistance/about/how-resistance-happens.html.
- Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 2009; 49: 1749-55. https://doi.org/10.1086/647952
- Lewis JS II, Kirn TJ Jr, Weinstein MP, Limbago B, Bobenchik AM, Mathers AJ, et al.; Clinical and Laboratory Standards Institute (CLSI). M100: performance standards for antimicrobial susceptibility testing [Internet]. 32nd ed. Malvern (PA): CLSI; 2022. Available at: https://clsi.org/standards/products/microbiology/documents/m100/.
- European Committee on Antimicrobial Susceptibility Testing (EUCAST), European Society of Clinical Microbiology and Infectious Diseases. Rationale documents from EUCAST [Internet]. Copenhagen: EUCAST; 2022. Available at: http://eucast.org/publications-and-documents/rd.
- Humphries RM, Abbott AN, Hindler JA. Understanding and addressing CLSI breakpoint revisions: a primer for clinical laboratories. J Clin Microbiol 2019; 57: e00203-19. https://doi.org/10.1128/JCM.00203-19
- Brown D, Macgowan A. Harmonization of antimicrobial susceptibility testing breakpoints in Europe: implications for reporting intermediate susceptibility. J Antimicrob Chemother 2010; 65: 183-5. https://doi.org/10.1093/jac/dkp432
- Prinzi A. Updating breakpoints in antimicrobial susceptibility testing [Internet]. Washington, DC: American Society for Microbiology; 2022. Available at: https://asm.org/Articles/2022/February/Updating-Breakpoints-in-Antimicrobial-Susceptibili.
- Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48 Suppl 1: 5-16. Erratum in: J Antimicrob Chemother 2002; 49: 1049. https://doi.org/10.1093/jac/dkf083
- Saito A, Inamatsu T, Okada J, Oguri T, Kanno H, Kusano N, et al. Clinical breakpoints in pulmonary infections and sepsis: new antimicrobial agents and supplemental information for some agents already released. J Infect Chemother 1999; 5: 223-6. https://doi.org/10.1007/s101560050041
- Tulane University School of Medicine. MIC and time- vs. concentration-dependent killing [Internet]. New Orleans (LA): Tulane University School of Medicine; 2021. Available at: https://tmedweb.tulane.edu/pharmwiki/doku.php/time-_concentration-dependent_killing.
- Choi EJ, Ri HS, Park H, Kim HJ, Yoon JU, Byeon GJ. Unexpected extrusion of the implantable pulse generator of the spinal cord stimulator - a case report. Anesth Pain Med (Seoul) 2021; 16: 103-7. https://doi.org/10.17085/apm.20054
- Yazdi C, Finn R. Management of intrathecal pump site infection in a patient with metastatic breast cancer without the removal of the system, a case report. J Anesth Intensive Care Med 2017; 1: 555568. https://doi.org/10.19080/JAICM.2017.01.555568
- Falowski SM, Provenzano DA, Xia Y, Doth AH. Spinal cord stimulation infection rate and risk factors: results from a United States payer database. Neuromodulation 2019; 22: 179-89. https://doi.org/10.1111/ner.12843
- Bendel MA, O'Brien T, Hoelzer BC, Deer TR, Pittelkow TP, Costandi S, et al. Spinal cord stimulator related infections: findings from a multicenter retrospective analysis of 2737 implants. Neuromodulation 2017; 20: 553-7. https://doi.org/10.1111/ner.12636
- Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, et al. Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation 2017; 20: 558-62. https://doi.org/10.1111/ner.12609
- Loubet P, Burdet C, Vindrios W, Grall N, Wolff M, Yazdanpanah Y, et al. Cefazolin versus anti-staphylococcal penicillins for treatment of methicillinsusceptible Staphylococcus aureus bacteraemia: a narrative review. Clin Microbiol Infect 2018; 24: 125-32. https://doi.org/10.1016/j.cmi.2017.07.003
- Brook I. Inoculum effect. Rev Infect Dis 1989; 11: 361-8. https://doi.org/10.1093/clinids/11.3.361
- Miller WR, Seas C, Carvajal LP, Diaz L, Echeverri AM, Ferro C, et al. The cefazolin inoculum effect is associated with increased mortality in methicillin-susceptible Staphylococcus aureus bacteremia. Open Forum Infect Dis 2018; 5: ofy123. https://doi.org/10.1093/ofid/ofy123
- Lenhard JR, Bulman ZP. Inoculum effect of β-lactam antibiotics. J Antimicrob Chemother 2019; 74: 2825-43. https://doi.org/10.1093/jac/dkz226
- Carmona-Fontaine C, Xavier JB. Altruistic cell death and collective drug resistance. Mol Syst Biol 2012; 8: 627. https://doi.org/10.1038/msb.2012.60
- Bamberger DM, Boyd SE. Management of Staphylococcus aureus infections. Am Fam Physician 2005; 72: 2474-81.
- Warner NS, Schaefer KK, Eldrige JS, Lamer TJ, Pingree MJ, Bendel MA, et al. Peripheral nerve stimulation and clinical outcomes: a retrospective case series. Pain Pract 2021; 21: 411-8. https://doi.org/10.1111/papr.12968
- Ilfeld BM, Gabriel RA, Saulino MF, Chae J, Peckham PH, Grant SA, et al. Infection rates of electrical leads used for percutaneous neurostimulation of the peripheral nervous system. Pain Pract 2017; 17: 753-62. https://doi.org/10.1111/papr.12523
- Delhaas EM, Huygen FJPM. Complications associated with intrathecal drug delivery systems. BJA Educ 2020; 20: 51-7. https://doi.org/10.1016/j.bjae.2019.11.002
- Malheiro L, Gomes A, Barbosa P, Santos L, Sarmento A. Infectious complications of intrathecal drug administration systems for spasticity and chronic pain: 145 patients from a tertiary care center. Neuromodulation 2015; 18: 421-7. https://doi.org/10.1111/ner.12265
- Ruppen W, Derry S, McQuay HJ, Moore RA. Infection rates associated with epidural indwelling catheters for seven days or longer: systematic review and meta-analysis. BMC Palliat Care 2007; 6: 3. https://doi.org/10.1186/1472-684X-6-3
- Harde M, Bhadade R, Iyer H, Jatale A, Tiwatne S. A comparative study of epidural catheter colonization and infection in Intensive Care Unit and wards in a Tertiary Care Public Hospital. Indian J Crit Care Med 2016; 20: 109-13. https://doi.org/10.4103/0972-5229.175943
- Brown MM, Horswill AR. Staphylococcus epidermidis-skin friend or foe? PLoS Pathog 2020; 16: e1009026. https://doi.org/10.1371/journal.ppat.1009026
- Cau L, Williams MR, Butcher AM, Nakatsuji T, Kavanaugh JS, Cheng JY, et al. Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. J Allergy Clin Immunol 2021; 147: 955-66. e16. https://doi.org/10.1016/j.jaci.2020.06.024
- Otto M. Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol 2009; 7: 555-67. https://doi.org/10.1038/nrmicro2182
- Kumar G, Kumar N, Taneja A, Kaleekal T, Tarima S, McGinley E, et al.; Milwaukee Initiative in Critical Care Outcomes Research (MICCOR) Group of Investigators. Nationwide trends of severe sepsis in the 21st century (2000-2007). Chest 2011; 140: 1223-31. https://doi.org/10.1378/chest.11-0352
- de Jong PC, Kansen PJ. A comparison of epidural catheters with or without subcutaneous injection ports for treatment of cancer pain. Anesth Analg 1994; 78: 94-100. https://doi.org/10.1213/00000539-199401000-00017
- Shim J, Seo TS, Song MG, Cha IH, Kim JS, Choi CW, et al. Incidence and risk factors of infectious complications related to implantable venousaccess ports. Korean J Radiol 2014; 15: 494-500. https://doi.org/10.3348/kjr.2014.15.4.494
- Kim KH, Seo HJ, Abdi S, Huh B. All about pain pharmacology: what pain physicians should know. Korean J Pain 2020; 33: 108-20. https://doi.org/10.3344/kjp.2020.33.2.108
- Park JW, Park SM, Lee HJ, Lee CK, Chang BS, Kim H. Infection following percutaneous vertebral augmentation with polymethylmethacrylate. Arch Osteoporos 2018; 13: 47. https://doi.org/10.1007/s11657-018-0468-y
- Abdelrahman H, Siam AE, Shawky A, Ezzati A, Boehm H. Infection after vertebroplasty or kyphoplasty. A series of nine cases and review of literature. Spine J 2013; 13: 1809-17. https://doi.org/10.1016/j.spinee.2013.05.053
- Hernandez L, Munoz ME, Goni I, Gurruchaga M. New injectable and radiopaque antibiotic loaded acrylic bone cements. J Biomed Mater Res B Appl Biomater 2008; 87: 312-20. https://doi.org/10.1002/jbm.b.31105
- Pellegrini AV, Suardi V. Antibiotics and cement: what I need to know? Hip Int 2020; 30(1_suppl): 48-53. https://doi.org/10.1177/1120700020915463
- Kim WS, Kim KH. Percutaneous osteoplasty for painful bony lesions: a technical survey. Korean J Pain 2021; 34: 375-93. https://doi.org/10.3344/kjp.2021.34.4.375
- Ross JJ. Septic arthritis of native joints. Infect Dis Clin North Am 2017; 31: 203-18. https://doi.org/10.1016/j.idc.2017.01.001
- Garcia-Arias M, Balsa A, Mola EM. Septic arthritis. Best Pract Res Clin Rheumatol 2011; 25: 407-21. https://doi.org/10.1016/j.berh.2011.02.001
- Horowitz DL, Katzap E, Horowitz S, Barilla-LaBarca ML. Approach to septic arthritis. Am Fam Physician 2011; 84: 653-60.
- Long B, Koyfman A, Gottlieb M. Evaluation and management of septic arthritis and its mimics in the emergency department. West J Emerg Med 2019; 20: 331-41. https://doi.org/10.5811/westjem.2018.10.40974
- Elsissy JG, Liu JN, Wilton PJ, Nwachuku I, Gowd AK, Amin NH. Bacterial septic arthritis of the adult native knee joint: a review. JBJS Rev 2020; 8: e0059. https://doi.org/10.2106/jbjs.rvw.19.00059
- Stutz G, Gachter A. [Diagnosis and stage-related therapy of joint infections]. Unfallchirurg 2001; 104: 682-6. German. https://doi.org/10.1007/s001130170068
- Balato G, de Matteo V, Ascione T, de Giovanni R, Marano E, Rizzo M, et al. Management of septic arthritis of the hip joint in adults. A systematic review of the literature. BMC Musculoskelet Disord 2021; 22(Suppl 2): 1006. https://doi.org/10.1186/s12891-021-04843-z
- Jiang JJ, Piponov HI, Mass DP, Angeles JG, Shi LL. Septic arthritis of the shoulder: a comparison of treatment methods. J Am Acad Orthop Surg 2017; 25: e175-84. https://doi.org/10.5435/jaaos-d-16-00103
- Movassaghi K, Wakefield C, Bohl DD, Lee S, Lin J, Holmes GB Jr, et al. Septic arthritis of the native ankle. JBJS Rev 2019; 7: e6. https://doi.org/10.2106/JBJS.RVW.18.00080
- Lener S, Hartmann S, Barbagallo GMV, Certo F, Thome C, Tschugg A. Management of spinal infection: a review of the literature. Acta Neurochir (Wien) 2018; 160: 487-96. https://doi.org/10.1007/s00701-018-3467-2
- Duarte RM, Vaccaro AR. Spinal infection: state of the art and management algorithm. Eur Spine J 2013; 22: 2787-99. https://doi.org/10.1007/s00586-013-2850-1
- Gouliouris T, Aliyu SH, Brown NM. Spondylodiscitis: update on diagnosis and management. J Antimicrob Chemother 2010; 65 Suppl 3: iii11-24. https://doi.org/10.1093/jac/dkq303
- Choi EJ, Kim SY, Kim HG, Shon HS, Kim TK, Kim KH. Percutaneous endoscopic debridement and drainage with four different approach methods for the treatment of spinal infection. Pain Physician 2017; 20: E933-40. https://doi.org/10.36076/ppj.20.5.E933
- Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. Asian Spine J 2014; 8: 216-23. https://doi.org/10.4184/asj.2014.8.2.216
- Raff AB, Kroshinsky D. Cellulitis: a review. JAMA 2016; 316: 325-37. https://doi.org/10.1001/jama.2016.8825
- Sullivan T, de Barra E. Diagnosis and management of cellulitis. Clin Med (Lond) 2018; 18: 160-3. https://doi.org/10.7861/clinmedicine.18-2-160
- Rrapi R, Chand S, Kroshinsky D. Cellulitis: a review of pathogenesis, diagnosis, and management. Med Clin North Am 2021; 105: 723-35. https://doi.org/10.1016/j.mcna.2021.04.009
- Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59: e10-52. Erratum in: Clin Infect Dis 2015; 60: 1448. https://doi.org/10.1093/cid/civ113
- Naucler P, Huttner A, van Werkhoven CH, Singer M, Tattevin P, Einav S, et al. Impact of time to antibiotic therapy on clinical outcome in patients with bacterial infections in the emergency department: implications for antimicrobial stewardship. Clin Microbiol Infect 2021; 27: 175-81. https://doi.org/10.1016/j.cmi.2020.02.032
- Lee MS, Oh JY, Kang CI, Kim ES, Park S, Rhee CK, et al. Guideline for antibiotic use in adults with community-acquired pneumonia. Infect Chemother 2018; 50: 160-98. https://doi.org/10.3947/ic.2018.50.2.160
- Eisen DP, Hamilton E, Bodilsen J, Koster-Rasmussen R, Stockdale AJ, Miner J, et al. Longer than 2 hours to antibiotics is associated with doubling of mortality in a multinational community-acquired bacterial meningitis cohort. Sci Rep 2022; 12: 672. https://doi.org/10.1038/s41598-021-04349-7
- Nakatani S, Ohara T, Ashihara K, Izumi C, Iwanaga S, Eishi K, et al. JCS 2017 guideline on prevention and treatment of infective endocarditis. Circ J 2019; 83: 1767-809. https://doi.org/10.1253/circj.cj-19-0549
- Oshima T, Kodama Y, Takahashi W, Hayashi Y, Iwase S, Kurita T, et al. Empiric antibiotic therapy for severe sepsis and septic shock. Surg Infect (Larchmt) 2016; 17: 210-6. https://doi.org/10.1089/sur.2014.096
- Leekha S, Terrell CL, Edson RS. General principles of antimicrobial therapy. Mayo Clin Proc 2011; 86: 156-67. https://doi.org/10.4065/mcp.2010.0639
- NHS Greater Glasgow and Clyde. Infection management guidelines empirical antibiotic therapy in adults. [Internet]. Glasgow: NHS Greater Glasgow and Clyde; 2020. Available at: https://handbook.ggcmedicines.org.uk/media/1133/2021-infection-management-poster.pdf.
- NHS Grampian Antimicrobial Management Team. Empirical antimicrobial therapy prescribing guidance for adults. Version 6. [Internet]. Aberdeen: NHS Grampian Antimicrobial Management Team; 2018. Available at: https://www.nhsgrampian.org/globalassets/foidocument/foi-public-documents1---all-documents/IMG_EmpAposter.pdf.
- Beveridge TJ. Use of the gram stain in microbiology. Biotech Histochem 2001; 76: 111-8. https://doi.org/10.1080/bih.76.3.111.118
- Popescu A, Doyle RJ. The Gram stain after more than a century. Biotech Histochem 1996; 71: 145-51. https://doi.org/10.3109/10520299609117151
- Coico R. Gram staining. Curr Protoc Microbiol 2005; Appendix 3: Appendix 3C.
- Sarkar P, Yarlagadda V, Ghosh C, Haldar J. A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Medchemcomm 2017; 8: 516-33. https://doi.org/10.1039/c6md00585c
- Garnacho-Montero J, Escoresca-Ortega A , Fernandez-Delgado E. Antibiotic de-escalation in the ICU: how is it best done? Curr Opin Infect Dis 2015; 28: 193-8. https://doi.org/10.1097/QCO.0000000000000141
- De Waele JJ, Schouten J, Beovic B, Tabah A, Leone M. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care: no simple answers to simple questions-a viewpoint of experts. Intensive Care Med 2020; 46: 236-44. https://doi.org/10.1007/s00134-019-05871-z
- Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens 2021; 10: 165. https://doi.org/10.3390/pathogens10020165
- Patel K, Bunachita S, Agarwal AA, Bhamidipati A, Patel UK. A comprehensive overview of antibiotic selection and the factors affecting it. Cureus 2021; 13: e13925. https://doi.org/10.7759/cureus.13925
- Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 2004; 38: 864-70. https://doi.org/10.1086/381972
- World Health Organization. Critically important antimicrobials for human medicine [Internet]. 6th ed. Geneva: World Health Organization; 2019. Available at: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf.
- Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med 2016; 6: a025247. https://doi.org/10.1101/cshperspect.a025247
- Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol 2012; 73: 27-36. https://doi.org/10.1111/j.1365-2125.2011.04080.x
- Mabilat C, Gros MF, Nicolau D, Mouton JW, Textoris J, Roberts JA, et al. Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur J Clin Microbiol Infect Dis 2020; 39: 791-7. https://doi.org/10.1007/s10096-019-03769-8
- Wong G, Sime FB, Lipman J, Roberts JA. How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 2014; 14: 288. https://doi.org/10.1186/1471-2334-14-288
- Therapeutic Drug Monitoring (TDM) protocol for adult: vancomycin and aminoglycosides [Internet]. Riyadh: Saudi Arabia Ministry of Health; 2019. Available at: https://www.moh.gov.sa/Ministry/MediaCenter/Publications/Documents/Protocol-002.pdf.
- Wang N, Luo J, Deng F, Huang Y, Zhou H. Antibiotic combination therapy: a strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front Pharmacol 2022; 13: 839808. https://doi.org/10.3389/fphar.2022.839808
- Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper. Intensive Care Med 2020; 46: 1127-53. https://doi.org/10.1007/s00134-020-06050-1
- Shrayteh ZM, Rahal MK, Malaeb DN. Practice of switch from intravenous to oral antibiotics. Springerplus 2014; 3: 717. https://doi.org/10.1186/2193-1801-3-717
- Cyriac JM, James E. Switch over from intravenous to oral therapy: a concise overview. J Pharmacol Pharmacother 2014; 5: 83-7. https://doi.org/10.4103/0976-500X.130042
- Pletz MW, Hagel S, Forstner C. Who benefits from antimicrobial combination therapy? Lancet Infect Dis 2017; 17: 677-8. https://doi.org/10.1016/S1473-3099(17)30233-5
- Tejaswini YS, Challa SR, Nalla KS, Gadde RS, Pavani AL, Neerisha V. Practice of intravenous to oral conversion of antibiotics and its influence on length of stay at a tertiary care hospital: a prospective study. J Clin Diagn Res 2018; 12: FC01-4. https://doi.org/10.7860/JCDR/2018/31647.11246
- Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended spectrum beta-lactamases: definition, classification and epidemiology. Curr Issues Mol Biol 2015; 17: 11-21.
- Rudresh SM, Nagarathnamma T. Extended spectrum β-lactamase producing Enterobacteriaceae & antibiotic co-resistance. Indian J Med Res 2011; 133: 116-8.
- Dhillon RH, Clark J. ESBLs: a clear and present danger? Crit Care Res Pract 2012; 2012: 625170. https://doi.org/10.1155/2012/625170
- Bajpai T, Pandey M, Varma M, Bhatambare GS. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med 2017; 7: 12-6. https://doi.org/10.4103/2231-0770.197508
- Saudagar PS, Survase SA, Singhal RS. Clavulanic acid: a review. Biotechnol Adv 2008; 26: 335-51. https://doi.org/10.1016/j.biotechadv.2008.03.002
- Akova M. Sulbactam-containing beta-lactamase inhibitor combinations. Clin Microbiol Infect 2008; 14 Suppl 1: 185-8. Erratum in: Clin Microbiol Infect 2008; 14 Suppl 5: 21-4. https://doi.org/10.1111/j.1469-0691.2007.01847.x
- Lopez Montesinos I, Montero M, Sorli L, Horcajada JP. Ceftolozane-tazobactam: when, how and why using it? Rev Esp Quimioter 2021; 34(Suppl 1): 35-7. https://doi.org/10.37201/req/s01.10.2021
- Rodgers P, Kamat S, Adhav C. Ceftazidime-avibactam plus metronidazole vs. meropenem in complicated intra-abdominal infections: Indian subset from RECLAIM. J Infect Dev Ctries 2022; 16: 305-13. https://doi.org/10.3855/jidc.14912
- Tanouchi Y, Pai A, Buchler NE, You L. Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol 2012; 8: 626. https://doi.org/10.1038/msb.2012.57
- Tangden T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups J Med Sci 2014; 119: 149-53. https://doi.org/10.3109/03009734.2014.899279
- Marshall WF, Blair JE. The cephalosporins. Mayo Clin Proc 1999; 74: 187-95. https://doi.org/10.4065/74.2.187
- Barbaud A, Weinborn M, Garvey LH, Testi S, Kvedariene V, Bavbek S, et al. Intradermal tests with drugs: an approach to standardization. Front Med (Lausanne) 2020; 7: 156. https://doi.org/10.3389/fmed.2020.00156
- Lee SH, Park HW, Kim SH, Chang YS, Kim SS, Cho SH, et al. The current practice of skin testing for antibiotics in Korean hospitals. Korean J Intern Med 2010; 25: 207-12. https://doi.org/10.3904/kjim.2010.25.2.207
- Shenoy ES, Macy E, Rowe T, Blumenthal KG. Evaluation and management of penicillin allergy: a review. JAMA 2019; 321: 188-99. https://doi.org/10.1001/jama.2018.19283
- Kim EJ, Hwang EJ, Yoo YM, Kim KH. Prevention, diagnosis, and treatment of opioid use disorder under the supervision of opioid stewardship programs: it's time to act now. Korean J Pain 2022; 35: 361-82. https://doi.org/10.3344/kjp.2022.35.4.361
- Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-81. https://doi.org/10.1111/j.1469-0691.2011.03570.x