DOI QR코드

DOI QR Code

Analysis of Frequency Lock-in Breakings with Random Dithering in a Ring Laser Gyroscope

랜덤 디더링을 이용한 링레이저 자이로 주파수 잠김 깨짐 특성 분석

  • Received : 2023.03.06
  • Accepted : 2023.03.20
  • Published : 2023.04.25

Abstract

In this paper, the results of analyzing the frequency lock-in breaking characteristics of a ring laser gyroscope with random dithering through numerical experiments are presented. By observing the variant features in the frequency lock-in characteristics according to the dithering amplitude noise, it was possible to analyze the minimum noise condition that causes the frequency lock-in to be broken. It was confirmed that the result is closely related to the relative difference between the dynamic frequency lock-in corresponding to the average dithering amplitude and the frequency determined by the Sagnac effect corresponding to an input rotational angular velocity.

본 논문에서는 랜덤 디더링을 이용한 링레이저 자이로 주파수 잠김 깨짐 특성을 수치적 실험을 통해 분석한 결과를 나타내었다. 디더링 진폭잡음 크기에 따른 링레이저 자이로 주파수 잠김 특성 변화 관찰을 통해 주파수 잠김 깨짐을 유발하는 최소 진폭 잡음 크기를 분석할 수 있었다. 해당 결과는 평균 디더링 진폭에 상응하는 동적 주파수 잠김 크기 및 회전 각속도 입력에 대응하여 사냑 효과에 의해 발생하는 주파수 사이의 상대적인 차이와 밀접한 관련이 있음을 확인하였다.

Keywords

Acknowledgement

이 논문은 2023년 정부의 재원으로 수행된 연구 결과임.

References

  1. V. M. N. Passaro, A. Cuccovillo, L. Vaiani, M. D. Carlo, and C. E. Campanella, "Gyroscope technology and applications: A review in the industrial perspective," Sensors 17, 2284 (2017).
  2. E. J. Post, "Sagnac effect," Rev. Mod. Phys. 39, 475-493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  3. F. Jacobs and R. Zamoni, "Laser ring gyro of arbitrary shape and rotation axis," Am. J. Phys. 50, 659-660 (1982). https://doi.org/10.1119/1.12777
  4. C. V. Heer, "History of the laser gyro," Proc. SPIE 487, 2-12 (1984). https://doi.org/10.1117/12.943242
  5. J. E. Killpatrick, "Laser gyro dither random noise," Proc. SPIE 487, 85-93 (1984). https://doi.org/10.1117/12.943252
  6. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, "The ring laser gyro," Rev. Mod. Phys. 57, 61-104 (1985). https://doi.org/10.1103/RevModPhys.57.61
  7. K.-M. Shim and S.-H. Son, "A study on the dither random noise to minimize the output error of ring laser gyroscope," Korean J. Opt. Photonics 14, 649-656 (2003). https://doi.org/10.3807/KJOP.2003.14.6.649
  8. W.-S. Choi, K.-M. Shim, K.-H. Chong, J.-E. An, C.-J. Kim, and B.-Y. Park, "Sagnac effect compensations and locked states in a ring laser gyroscope," Sensors 23, 1718 (2023).
  9. Y. Tao, S. Li, G. Zhou, and J. Lin, "Mechanical dither control optimization for laser gyro with total reflection prisms," in Proc. 24th Saint Petersburg International Conference on Integrated Navigation Systems-ICINS (St. Petersburg, Russia, May 29-31, 2017).
  10. W. S. Choi, J. E. An, and C. J. Kim, "Analysis of dynamic frequency lock-in characteristics for ring laser gyroscope," in Proc. KSAS Fall Conference (Jeju Island, Korea, Nov. 16-18, 2022). pp. 91-92.
  11. W. Scheich, C.-S. Cha, and J. D. Cresser, "Quantum noise in a dithered ring-laser gyroscope," Phys. Rev. A. 29, 230-238 (1984). https://doi.org/10.1103/PhysRevA.29.230
  12. K.-M. Shim and C.-J. Kim, "A study on the dither random noise for improving the bias stability of ring laser gyroscope," J. Inst. Contr. Robot. Syst. 12, 1065-1073 (2006).
  13. W.-S. Choi and C.-J. Kim, "Investigation on output variations of ring laser gyroscope in the presence of non-ideal sinusoidal dithering," Proc. SPIE 12223, 122230O (2022).