DOI QR코드

DOI QR Code

Photobiomodulation Mediated by Red and Infrared Light: A Study of Its Effectiveness on Corneal Epithelial Cells and Wound Healing

적색 및 적외선 빛을 이용한 Photobiomodulation: 각막상피세포에 대한 효과와 상처 치유에 관한 연구

  • Sun Hee Ahn (Medical & Biophotonics Research Center, Korea Photonics Technology Institute) ;
  • Jae Sung Ahn (Medical & Biophotonics Research Center, Korea Photonics Technology Institute) ;
  • Byeongil Lee (Department of Smart Healthcare, Pukyoung National University)
  • 안선희 (한국광기술원, 광의료바이오 연구센터) ;
  • 안재성 (한국광기술원, 광의료바이오 연구센터) ;
  • 이병일 (국립부경대학교, 스마트 헬스케어 학부)
  • Received : 2023.03.06
  • Accepted : 2023.03.15
  • Published : 2023.04.25

Abstract

In this study, we have investigated the effect of photobiomodulation (PBM) on corneal wound healing, using a low-power light-emitting diode (LED) at different wavelengths. We found that LEDs with wavelengths ranging from 623 to 940 nm had no significant cytotoxic effects on corneal epithelial cells. The effect of PBM on promoting cell migration was analyzed by scratch assay, and it was found that PBM at 623 nm significantly increased cell migration and promoted wound healing. Furthermore, the expression of genes related to cell migration and wound healing was analyzed, and it was found that PBM at 623 nm upregulated the expression of the genes FGF-1 and MMP2, which are known to promote cell proliferation and extracellular matrix degradation. These findings suggest that PBM with low-powered light at specific wavelengths, particularly 623 nm, could be utilized to treat corneal injury.

본 연구에서는 다양한 파장의 저출력 light-emitting diode (LED)를 이용한 photobiomodulation (PBM)이 각막 상처 치유에 미치는 영향을 분석하였다. 각막상피세포에 623 nm에서 940 nm 범위의 파장의 LED를 조사한 결과, 유의미한 세포독성 영향을 미치지 않는 것을 확인하였다. PBM의 세포이동 촉진 효과를 세포 이동능 평가 시험을 통해 분석한 결과 623 nm 파장의 광조사에 의한 PBM이 세포이동을 크게 증가시키고 상처 치유를 촉진하는 것으로 나타났다. 또한, 세포이동 및 상처 치유와 관련된 유전자의 발현을 분석한 결과, 623 nm 파장의 광조사에 의한 PBM이 세포 증식과 세포 외 기질 분해를 촉진하는 것으로 알려진 FGF-1과 MMP2 유전자의 발현을 상향 조절한다는 사실을 발견했다. 이러한 연구 결과는 특정 파장, 특히 623 nm 파장의 저출력 빛을 이용한 PBM이 각막 손상 치료에 활용될 수 있는 가능성을 시사한다.

Keywords

Acknowledgement

저자들은 이진경, 김홍빈 연구원의 세포실험 지원에 대해 감사를 표한다.

References

  1. N. C. Delic, J. G. Lyons, N. D. Girolamo, and G. M. Halliday, "Damaging effects of ultraviolet radiation on the cornea," Photochem. Photobiol. 93, 920-929 (2017).  https://doi.org/10.1111/php.12686
  2. M. D. Wagoner, "Chemical injuries of the eye: Current concepts in pathophysiology and therapy," Surv. Ophthalmol. 41, 275-313 (1997).  https://doi.org/10.1016/S0039-6257(96)00007-0
  3. K. Watanabe, S. Nakagawa, and T. Nishida, "Stimulatory effects of fibronectin and EGF on migration of corneal epithelial cells," Investig. Ophthalmol. Vis. Sci. 28, 205-211 (1987). 
  4. S. E. Wilson, L. Chen, R. R. Mohan, Q. Liang, and J. Liu, "Expression of HGF, KGF, EGF and receptor messenger RNAs following corneal epithelial wounding," Exp. Eye Res. 68, 377-397 (1999).  https://doi.org/10.1006/exer.1998.0603
  5. X. Wang, S. Zhang, M. Dong, Y. Li, Q. Zhou, and L. Yang, "The proinflammatory cytokines IL-1β and TNF-α modulate corneal epithelial wound healing through p16Ink4a suppressing STAT3 activity," J. Cell. Physiol. 235, 10081-10093 (2020).  https://doi.org/10.1002/jcp.29823
  6. J. Imanishi, K. Kamiyama, I. Iguchi, M. Kita, C. Sotozono, and S. Kinoshita, "Growth factors: importance in wound healing and maintenance of transparency of the cornea," Prog. Retin. Eye Res. 19, 113-129 (2000).  https://doi.org/10.1016/S1350-9462(99)00007-5
  7. L. F. de Freitas and M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top. Quantum Electron. 22, 348-364 (2016).  https://doi.org/10.1109/JSTQE.2016.2561201
  8. Y.-Y. Huang, A. C.-H. Chen, J. D. Carroll, and M. R. Hamblin, "Biphasic dose response in low level light therapy," Dose-response 7, 358-383 (2009).  https://doi.org/10.2203/dose-response.09-027.Hamblin
  9. R. M. da S. Campos, A. R. Damaso, D. C. L. Masquio, A. E. Aquino Jr., M. Sene-Fiorese, F. O. Duarte, L. Tock, N. A. Parizotto, and V. S. Bagnato, "Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults," Lasers Med. Sci. 30, 1553-1563 (2015).  https://doi.org/10.1007/s10103-015-1759-9
  10. D. P. Kuffler, "Photobiomodulation in promoting wound healing: A review," Regen. Med. 11, 107-122 (2016).  https://doi.org/10.2217/rme.15.82
  11. B. Tashbayev, M. Yazdani, R. Arita, F. Fineide, and T. P. Utheim, "Intense pulsed light treatment in meibomian gland dysfunction: A concise review," Ocular Surf. 18, 583-594 (2020).  https://doi.org/10.1016/j.jtos.2020.06.002
  12. S. Yan and Y. Wu, "Efficacy and safety of intense pulsed light therapy for dry eye caused by meibomian gland dysfunction: A randomised trial," Ann. Palliat. Med. 10, 7857-7865 (2021).  https://doi.org/10.21037/apm-21-1303
  13. C. Nunez-Alvarez and N. N. Osborne, "Enhancement of corneal epithelium cell survival, proliferation and migration by red light: Relevance to corneal wound healing," Exp. Eye Res. 180, 231-241 (2019).  https://doi.org/10.1016/j.exer.2019.01.003
  14. Y.-H. Rhee, K. J. Cho, J.-C. Ahn, and P.-S. Chung, "Effect of photobiomodulation on wound healing of the corneal epithelium through Rho-GTPase," Med. Lasers 6, 67-76 (2017).  https://doi.org/10.25289/ml.2017.6.2.67
  15. A. Thalmann-Goetsch, K. Engelmann, and J. Bednarz, "Comparative study on the effects of different growth factors on migration of bovine corneal endothelial cells during wound healing," Acta Ophthalmol. Scand. 75, 490-495 (1997).  https://doi.org/10.1111/j.1600-0420.1997.tb00134.x
  16. D. Eveleth, S. Pizzuto, J. Weant, J. Jenkins-Eveleth, and R. A. Bradshaw, "Proliferation of human corneal endothelia in organ culture stimulated by wounding and the engineered human fibroblast growth factor 1 derivative TTHX1114," J. Ocul. Pharmacol. Ther. 36, 686-696 (2020).  https://doi.org/10.1089/jop.2019.0119
  17. B. Mulholland, S. J. Tuft, and P. T. Khaw, "Matrix metalloproteinase distribution during early corneal wound healing," Eye 19, 584-588 (2005).  https://doi.org/10.1038/sj.eye.6701557
  18. M. P. Caley, V. L. Martins, and E. A. O'Toole, "Metalloproteinases and wound healing," Adv. Wound Care 4, 225-234 (2015).  https://doi.org/10.1089/wound.2014.0581
  19. S. R. Gordon, D. R. Reaume, and T. R. Perkins, "Insulin and IGF-2 support rat corneal endothelial cell growth and wound repair in the organ cultured tissue," Growth Factors 38, 269-281 (2020).  https://doi.org/10.1080/08977194.2021.1963721
  20. M. Nakamura, T. I. Chikama, and T. Nishida, "Characterization of insulin-like growth factor-1 receptors in rabbit corneal epithelial cells," Exp. Eye Res. 70, 199-204 (2000). https://doi.org/10.1006/exer.1999.0775