DOI QR코드

DOI QR Code

Characteristics of Biochar Derived from Lignocellulosic Biomass and Effect of Adsorption of Methylene Blue

목질계 바이오매스 유래 바이오차의 특성과 메틸렌블루 흡착 효과

  • Yoon-Jung Shin (Department of Wood Science and Engineering, Chonnam National University) ;
  • Dae-Yeon Song (Department of Wood Science and Engineering, Chonnam National University) ;
  • Eun-Ju Lee (Department of Wood Science and Engineering, Chonnam National University) ;
  • Jae-Won Lee (Department of Wood Science and Engineering, Chonnam National University)
  • 신윤정 (전남대학교 임산공학과) ;
  • 송대연 (전남대학교 임산공학과) ;
  • 이은주 (전남대학교 임산공학과) ;
  • 이재원 (전남대학교 임산공학과)
  • Received : 2022.12.22
  • Accepted : 2023.02.21
  • Published : 2023.04.10

Abstract

In this study, biochar was produced from biomass waste, and its methylene blue adsorption capacity was evaluated. The major components of the biomass were cellulose, hemicellulose, and lignin. Ash content was high in waste wood. Carbonization yield decreased as carbonization temperature increased, as did hydrogen and oxygen content, but carbon content increased. Increased carbonization temperature also increased the specific surface area and micropores of biochar. At 600 ℃, biochar had the highest specific surface area (216.15~301.80 m2 /g). As a result of methylene blue adsorption on biochar carbonized at 600 ℃, oak, waste wood, and pruned apple tree branches fit the Freundlich model, while pruned peach tree branches fit the Langmuir model. In the adsorption kinetics of methylene blue on biochar, oak and pruned peach tree branches fit a pseudo-first-order model, while waste wood and pruned apple tree branches fit a pseudo-second-order model.

본 논문에서는 미이용 바이오매스로부터 바이오차를 생산하고 메틸렌블루 흡착 특성을 평가하였다. 바이오매스는 주로 셀룰로오스, 헤미셀룰로오스, 리그닌으로 구성되어 있으며 회분의 함량은 벌채부산물에서 가장 높았다. 탄화 온도가 증가할수록 탄화 수율은 감소하였으며, 수소와 산소 함량도 감소하였다. 반면, 탄소 함량은 증가하였다. 탄화 온도가 증가할수록 바이오차의 비표면적과 미세기공은 증가하였다. 바이오차 비표면적은 탄화 온도 600 ℃에서 가장 높았다(216.15~301.80 m2 /g). 600 ℃에서 탄화한 바이오차를 이용하여 메틸렌블루 흡착 실험을 수행한 결과, 참나무, 벌채부산물, 사과 전정가지의 흡착 거동은 Freundlich model, 복숭아 전정가지는 Langmuir model에 적합하였다. 흡착 동역학에서 참나무와 복숭아 전정가지는 pseudo-first-order model, 벌채부산물과 사과 전정가지는 pseudo-second-order model에 적합하였다.

Keywords

Acknowledgement

This work was funded by the Rural Development Administration (Grants PJ015053) of Republic of Korea.

References

  1. F. Wang, D. Ouyang, Z. Zhou, S. J. Page, D. Liu, and X. Zhao, Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage, J. Energy Chem., 57, 247-280 (2021). https://doi.org/10.1016/j.jechem.2020.08.060
  2. Y. H. Chan, S. K. Loh, B. L. F. Chin, C. L. Yiin, B. S. How, K. W. Cheah, and S. S. Lam, Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects, Chem. Eng. J., 397, 125406 (2020).
  3. X. Yang, K. Kang, L. Qiu, L. Zhao, and R. Sun, Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches, Renew. Energ., 146, 1691-1699 (2020). https://doi.org/10.1016/j.renene.2019.07.148
  4. Z. Liu, A. Quek, S. K. Hoekman, and R. Balasubramanian, Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel, 103, 943-949 (2013). https://doi.org/10.1016/j.fuel.2012.07.069
  5. O. Oginni, and K. Singh, Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochars, J. Environ. Chem. Eng., 8, 104169 (2020).
  6. X. Cui, S. Fang, Y. Yao, T. Li, Q. Ni. X. Yang, and Z. He, Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar, Sci. Total Environ., 562, 517-525 (2016). https://doi.org/10.1016/j.scitotenv.2016.03.248
  7. C. Setter, F. T. M. Silva, M. R. Assis, C. H. Ataide, P. F. Trugilho, and T. J. P. Oliveira, Slow pyrolysis of coffee husk briquettes: Characterization of the solid and liquid fractions, Fuel, 261, 116420 (2020).
  8. J. Cheng, S. C. Hu, G. T. Sun, Z. C. Geng, and M. Q. Zhu, The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process, Ind. Crops Prod., 170, 113690 (2021).
  9. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, and Y. S. Ok, Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 19-33 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  10. F. R. Oliveira, A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu, and S. K. Khanal, Environmental application of biochar: Current status and perspectives, Bioresour. Technol., 246, 110-122 (2017). https://doi.org/10.1016/j.biortech.2017.08.122
  11. H. S. Oh, J. S. Chang, Comparison of cation anion dye removal characteristics between kelp-based magnetic biochar and pine-based magnetic biochar, J. Korean Soc. Environ. Eng., 42, 308-318 (2020). https://doi.org/10.4491/ksee.2020.42.6.308
  12. O. uner, and Y. Bayrak, The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax, Microporous Mesoporous Mater., 268, 225-234 (2018). https://doi.org/10.1016/j.micromeso.2018.04.037
  13. L. G. J. M. A. Segal, J. J. Creely, A. E. Martin Jr, and C. M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J., 29, 786-794 (1959). https://doi.org/10.1177/004051755902901003
  14. E. P. Barrett, L. G. Joyner, and P. P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373-380 (1951). https://doi.org/10.1021/ja01145a126
  15. N. R. Khalili, M. Campbell, G. Sandi, and J. Golas, Production of micro-and mesoporous activated carbon from paper mill sludge: I. Effect of zinc chloride activation, Carbon, 38, 1905-1915 (2000). https://doi.org/10.1016/S0008-6223(00)00043-9
  16. D. Pandey, A. Daverey, K. Dutta, V. K. Yata, K. Arunachalam, Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study, Environ. Technol. Innov., 25, 102200 (2022).
  17. Y. Xue, C. Wang, Z. Hu, Y. Zhou, Y. Xiao, and T. Wang, Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb (II), Cd (II) from aqueous solution, Waste Manage., 89, 48-56 (2019). https://doi.org/10.1016/j.wasman.2019.03.047
  18. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86, 1781-1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013
  19. K. Wang, J. Zhang, B. H. Shanks, and R. C. Brown, The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation, Appl. Energy, 148, 115-120 (2015). https://doi.org/10.1016/j.apenergy.2015.03.034
  20. H. H. Muigai, U. Bordoloi, R. Hussain, K. Ravi, V. S. Moholkar, and P. Kalita, A comparative study on synthesis and characterization of biochars derived from lignocellulosic biomass for their candidacy in agronomy and energy applications, Int. J. Energy Res., 45, 4765-4781 (2021). https://doi.org/10.1002/er.6092
  21. X. Cao, K. S. Ro, J. A. Libra, C. I. Kammann, I. Lima, N. Berge, and J. Mao, Effects of biomass types and carbonization conditions on the chemical characteristics of hydrochars, J. Agric. Food Chem., 61, 9401-9411 (2013). https://doi.org/10.1021/jf402345k
  22. T. Wang, H. Liu, C. Duan, R. Xu, Z. Zhang, D. She, and J. Zheng, The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications, Materials, 13, 3391 (2020).
  23. Z. Wang, L. Han, K. Sun, J. Jin, K. S. Ro, J. A. Libra, and B. Xing, Sorption of four hydrophobic organic contaminants by biochars derived from maize straw, wood dust and swine manure at different pyrolytic temperatures, Chemosphere, 144, 285-291 (2016). https://doi.org/10.1016/j.chemosphere.2015.08.042
  24. M. Hassan, Y. Liu, R. Naidu, S. J. Parikh, J. Du, F. Qi, and I. R. Willett, Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis, Sci. Total Environ., 744, 140714 (2020).
  25. S. E. Ban, E. J. Lee, D. J. Lim, I. S. Kim, and J. W. Lee, Evaluation of sulfuric acid-pretreated biomass-derived biochar characteristics and its diazinon adsorption mechanism, Bioresour. Technol., 348, 126828 (2022).
  26. B. C. Chaves Fernandes, K. Ferreira Mendes, A. F. Dias Junior, V. P. da Silva Caldeira, T. M. da Silva Teofilo, T. Severo Silva, and D. Valadao Silva, Impact of pyrolysis temperature on the properties of eucalyptus wood-derived biochar, Materials, 13, 5841 (2020).
  27. Y. Wang, T. Hu, X. Zhao, S. Wang, and G. Xing, Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times, Energy Fuels, 27, 5890-5899 (2013). https://doi.org/10.1021/ef400972z
  28. M. Keiluweit, P. S. Nico, M. G. Johnson, and M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44, 1247-1253 (2010). https://doi.org/10.1021/es9031419
  29. P. Kim, A. Johnson, C. W. Edmunds, M. Radosevich, F. Vogt, T. G. Rials, and N. Labbe, Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis, Energy Fuels, 25, 4693-4703 (2011). https://doi.org/10.1021/ef200915s
  30. P. Pariyar, K. Kumari, M. K. Jain, and P. S. Jadhao, Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application, Sci. Total Environ., 713, 136433 (2020).
  31. T. Wang, H. Liu, C. Duan, R. Xu, Z. Zhang, D. She, and J. Zheng, The eco-friendly biochar and valuable bio-oil from Caragana korshinskii: Pyrolysis preparation, characterization, and adsorption applications, Materials, 13, 3391 (2020).
  32. Y. Sun, B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, and L. Yang, Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties, Chem. Eng. J., 240, 574-578 (2014). https://doi.org/10.1016/j.cej.2013.10.081
  33. T. S. Jo, J. W. Choi, and O. K. Lee, Physicochemical changes of woody charcoals prepared by different carbonizing temperature, J. Korean Wood Sci. Technol., 34, 53-60 (2007).
  34. S. K. Das, G. K. Ghosh, R. K. Avasthe, and K. Sinha, Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks, J. Environ. Manage., 278, 111501 (2021).
  35. M. J. Antal and M. Gronli, The art, science, and technology of charcoal production, Ind. Eng. Chem. Res., 42, 1619-1640 (2003). https://doi.org/10.1021/ie0207919
  36. Y. Yao, B. Gao, M. Inyang, A. R. Zimmerman, X. Cao, P. Pullammanappallil, and L. Yang, Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential, Bioresour. Technol., 102, 6273-6278 (2011). https://doi.org/10.1016/j.biortech.2011.03.006
  37. H. Lyu, B. Gao, F. He, A. R. Zimmerman, C. Ding, J. Tang, and J. C. Crittenden, Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue, Chem. Eng. J., 335, 110-119 (2018). https://doi.org/10.1016/j.cej.2017.10.130
  38. S. Karagoz, T. Tay, S. Ucar, and M. Erdem, Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption, Bioresour. Technol., 99, 6214-6222 2008). https://doi.org/10.1016/j.biortech.2007.12.019
  39. H. Li, X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen, and L. Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072
  40. B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, and H. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review, J. Anal. Appl. Pyrolysis, 155, 105081 (2021).
  41. H. Zhang, B. Peng, Q. Liu, C. Wu, and Z. Li, Preparation of porous biochar from heavy bio-oil for adsorption of methylene blue in wastewater, Fuel Process. Technol., 238, 107485 (2022).
  42. S. W. Won, G. Wu, H. Ma, Q. Liu, Y. Yan, L. Cui, and Y. S. Yun, Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste, J. Hazard. Mater., 138, 370-377 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.060
  43. H. Nath, A. Saikia, P. J. Goutam, B. K. Saikia, and N. Saikia, Removal of methylene blue from water using okra (Abelmoschus esculentus L.) mucilage modified biochar, Bioresour. Technol. Reports, 14, 100689 (2021).
  44. Y. Wang, Y. Zhang, S. Li, W. Zhong, and W. Wei, Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid, J. Mol. Liq., 268, 658-666 (2018). https://doi.org/10.1016/j.molliq.2018.07.085
  45. D. A. G. Sumalinog, S. C. Capareda, and M. D. G. de Luna, Evaluation of the effectiveness and mechanisms of acetaminophen and methylene blue dye adsorption on activated biochar derived from municipal solid wastes, J. Environ. Manage., 210, 255-262 (2018). https://doi.org/10.1016/j.jenvman.2018.01.010
  46. X. Yao, L. Ji, J. Guo, S. Ge, W. Lu, L. Cai, and H. Zhang, Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption, Bioresour. Technol., 302, 122842 (2020).