DOI QR코드

DOI QR Code

Rating of Fire Risk of Combustible Materials by the New Chung's Equation-IX

새로운 Chung's equation-IX에 의한 연소성 물질의 화재 위험성 등급 평가

  • Yeong-Jin Chung (Department of Fire Protection Engineering, Kangwon National University) ;
  • Eui Jin (Fire & Disaster Prevention Research Center, Kangwon National University)
  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • Received : 2023.02.03
  • Accepted : 2023.02.21
  • Published : 2023.04.10

Abstract

To evaluate the fire risk of combustible materials, Chung's equations VII, VIII, and IX were newly established. The fire risk index-IX (FRI-IX) and fire risk rating (FRR) were calculated. Ginkgo, dawn redwood, toona, lime, walnut, and polymethylmethacrylate (PMMA) were selected as test specimens. The combustion characteristics were evaluated using a cone calorimeter according to ISO 5660-1. After combustion, the fire performance index-VII (FPI-VII) of the specimens, varied between 15.15 and 182.53 s2/kW, as determined by Chung's equations, and the fire growth index-VII (FGI-VII) varied between 0.0023 and 0.0165 kW/s2. The fire performance index-VIII (FPI-VIII) based on PMMA varied between 0.29 and 3.45, and the fire growth index-VIII (FGI-VIII) varied between 2.88 and 20.63. The FRI-IX, which is the fire risk rating, showed dawn redwood has a very high fire risk, with FRI-IX values of 71.14 (fire risk rating: G). Therefore, wood with a large amount of volatile organic compounds and a low bulk density showed a high value of FRI-IX by lowering FPI-VII and FPI-VIII and increasing FGI-VII and FGI-VIII.

연소성 물질의 화재위험성 평가를 하기 위해 Chung's equations-VII, Chung's equations-VIII, 그리고 Chung's equation-IX 을 새로 정립하였다. 화재위험성지수-IX (fire risk index-IX, FRI-IX)와 화재위험성등급(fire risk rating, FRR)을 산정하였다. 시험편은 은행나무, 메타세콰이어, 참죽나무, 피나무, 호두나무를 선택하였다. 콘칼로리미터(ISO 5660-1)를 사용하여 시험편에 대한 연소 특성을 시험하였다. 연소 종료 후 Chung's equations에 의해 산정된 화재성능지수-VII (fire performance index-VII, FPI-VII)는 15.15~182.53 s2/kW로 나타났고, 화재성장지수-VII (fire growth index-VII, FGI-VII)는 0.0023~0.0165 kW/s2로 나타났다. Polymethylmethacrylate (PMMA)를 기준으로 한 화재성능지수-VIII (FPI-VIII)는 0.29~3.45로 나타났고, 화재성장지수-VIII (FGI-VIII)는 2.88~20.63로 나타났다. 화재위험성 등급인 화재위험성지수-IX(FRI-IX)는 메타세콰이어가 71.14 (화재위험성등급: G)로 화재위험성이 매우 높은 목재로 나타났다. 그러므로 휘발성 유기 화합물을 다량 함유하고, 체적밀도가 낮은 목재는 FPI-VII와 FPI-VIII가 낮아지고, FGI-VII와 FGI-VIII가 높아짐에 의하여 FRI-IX가 높은 값을 나타내었다.

Keywords

References

  1. J. Buzek and E. Gyoori, Regulation (EU) No 305/2011 of the european parliament and of the council of 9 March 2011, Laying down harmonised conditions for the marketing of construction products and repealing council directive 89/106/EEC text with EEA relevance, OJEU, 5-43 (2011).
  2. V. Babrauskas, Effective measurement techniques for heat, smoke and toxic fire gases, Fire Saf., 17, 13-26 (1991). https://doi.org/10.1016/0379-7112(91)90010-V
  3. V. Babrauskas and S. J. Grayson, Heat Release in Fires, Elsevier, London, UK, 210-217 (1992).
  4. CBUF Report, Fire safety of upholstered furniture - The final report on the CBUF research programme, Sundstrom, B., Ed., EUR 16477 EN, European commission, measurements and testing report, Contract No. 3478/1/0/196/11-BCR-DK(30), Interscience Communications, London, UK (1995).
  5. M, M. Hirschler, Analysis of and potential correlations between fire tests for electrical cables, and how to use this information for fire hazard assessment, Fire Technol., 33, 291-315 (1997). https://doi.org/10.1023/A:1015384109580
  6. M. Janssens, Fundamental Thermophysical Characteristics of Wood and Their Role in Enclosure Fire Growth, Doctoral's thesis, University of Gent, Belgium (1991).
  7. ISO 5660-1, "Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Geneva, Switzerland (2015).
  8. M. A. Delichatsios, Smoke yields from turbulent buoyant jet flames, Fire Saf., 20, 299-311 (1993). https://doi.org/10.1016/0379-7112(93)90052-R
  9. H. C. Tran, Experimental data on wood materials, In: V. Babrauskas and S. J. Grayson (eds.). Heat Release in Fires, 357-372, Elsevier Applied Science, New Yok, USA (1992).
  10. M. Spearpoint and J. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model-effect of species, grain orientation and heat flux, Fire Saf., 36, 391-415 (2001). https://doi.org/10.1016/S0379-7112(00)00055-2
  11. M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Saf., 38, 219-228 (2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  12. B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019). https://doi.org/10.1016/j.carbon.2019.05.002
  13. L. Yan, Z. Xu, and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Prog. Org. Coat., 135, 123-134 (2019). https://doi.org/10.1016/j.porgcoat.2019.05.043
  14. Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018). https://doi.org/10.14478/ACE.2018.1076
  15. Y. J. Chung and E. Jin, Rating evaluation of fire risk for combustible materials in case of fire, Appl. Chem. Eng., 32, 75-82 (2021). https://doi.org/10.14478/ACE.2020.1103
  16. W. T. Simpso, Drying and control of moisture content and dimensional changes, In: Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA, 1-21 (1987).
  17. Y. J. Chung and E. Jin, Assessment and prediction of fire risk grades of wood species in different storage environments, Fire Sci. Eng., 36, 83-92 (2022).
  18. J. Pohleven, M. D. Burnard, and A. Kutnar, Volatile organic compounds emitted from untreated and thermally modified wood-A review, Wood Fiber Sci., 51, 231-254 (2019). https://doi.org/10.22382/wfs-2019-023
  19. J. D. Dehaan, Kirk's fire investigation, 5th ed., 84-112, Pearson, London, England (2002).
  20. V. Babrauskas, R. D. Peacock, Heat release rate: the single most important variable in fire hazard, Fire Saf., 18, 255-272 (1992). https://doi.org/10.1016/0379-7112(92)90019-9
  21. M. M. Hirschler, Use of heat release rate to predict whether individual furnishings would cause self propagating fires, Fire Saf., 32, 273-296 (1999). https://doi.org/10.1016/S0379-7112(98)00037-X
  22. M. M. Hirschler, Heat release testing of consumer products, J. ASTM Int., 6, 1-25 (2009). https://doi.org/10.1520/JAI102258
  23. F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Thermal Characterization of Polymeric Materials, Academic Press, New York, USA (1981).
  24. J. G. Quintire, Principles of fire behavior, Delmar Cengage Learning, New York, USA (1998).
  25. Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  26. B. Schartel and T. R. Hull, Development of fire-retarded materials-Interpretation of cone calorimeter data, Fire Mater., 31, 327-354 (2007). https://doi.org/10.1002/fam.949
  27. V. Babrauskas, Development of the cone calorimeter - A bench-scale, heat release rate apparatus based on oxygen consumption, Fire Mater., 8, 81-95 (1984).
  28. C. Jiao, X. Chen, and J. Zhang, Synergistic effects of F2O3 with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009). https://doi.org/10.1177/0734904109102033