DOI QR코드

DOI QR Code

Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM

CCD-RSM을 이용한 알팔파 추출물인 천연계면활성제가 포함된 O/W 유화액의 최적화

  • Seheum Hong (Department of Polymer Science and Engineering, Dankook University) ;
  • Jiachen Hou (Department of Chemical Engineering, Dankook University) ;
  • Seung Bum Lee (Department of Chemical Engineering, Dankook University)
  • Received : 2023.01.11
  • Accepted : 2023.02.16
  • Published : 2023.04.10

Abstract

In this study, natural surfactants were extracted from Medicago sativa L. The O/W emulsification processes with the extracted natural surfactants were optimized using central composite design model-response surface methodology (CCD-RSM) and a 95% confidence interval was used to confirm the reasonableness of the optimization. Herein, independent parameters were the ratio of saponins to total surfactant (P), amount of surfactant (W), and emulsification speed (R), whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and viscosity (V). Using the multiple reaction, the optimal conditions for the ratio of saponins to total surfactant, amount of surfactant, and emulsification speed for O/W emulsification were 49.5%, 9.1 wt%, and 6559.5 rpm, respectively. Under these optimal conditions, the expected values of ESI, MDS, and V as the reaction parameters were 89.9%, 1058.4 nm, and 1522.5 cP, respectively. The values of ESI, MDS, and V from these expected values were 88.7%, 1026.4 nm, and 1486.5 cP, respectively, and the average experimental error for validating the accuracy was about 2.3 (± 0.4)%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process with Medicago sativa L. using CCD-RSM.

본 연구에서는 알팔파로부터 추출한 천연계면활성제를 사용하여 중심합성설계모델(CCD-RSM)을 이용한 O/W 유화제조 공정의 최적화를 수행하였다. 그 결과 95% 신뢰구간에서 최적화 결과의 통계학적 합리성을 확인하였다. CCD-RSM을 통하여 독립변수인 알팔파 추출물:Sugar ester S-370의 혼합비율(P), 계면활성제의 첨가량(W) 및 유화속도(R)가 반응치인 유화안정도지수(ESI), 평균입자크기(MDS) 및 점도(V)에 끼치는 영향을 조사하여 O/W 유화제조공정의 최적조건을 산출하였다. 유화안정도지수, 평균입자크기 및 점도에 관한 회귀방정식으로부터 다중반응을 수행하여 3가지 반응치를 동시에 만족하는 최적 유화조건으로 알팔파 추출물:Sugar ester S-370의 혼합비율은 49.5 wt%, 계면활성제의 첨가량 9.1 wt%, 유화속도 6559.5 rpm으로 나타났으며 산출된 반응치의 응답값은 ESI는 89.9%, MDS는 1058.4 nm, V는 1522.5 cP로 산출되었다. 이를 실험으로 확인한 결과 ESI는 88.7%, MDS는 1026.4 nm, V는 1486.5 cP이었으며 평균 오차율은 2.3 (± 0.4)%이었다. 따라서 CCD-RSM을 실제 유화 제조에 적용하여 만족스러운 O/W 유화제조 공정조건을 얻을 수 있었다.

Keywords

References

  1. Z. Bialy, M. Jurzysta, W. Oleszek, S. Piacente, C. Pizza, and J. Agric, Saponins in alfalfa (Medicago sativa L.) root and their structural elucidation, J. Agric. Food. Chem., 47, 3185-3192 (1999). https://doi.org/10.1021/jf9901237
  2. X. G. Liu, Y. Q. Sun, J. Bain, T. Han, D. D. Yue, D. Q. Li, and P. Y. Gao, Neuroprotective effects of triterpenoid saponins from Medicago sativa L. against H2O2-induced oxidative stress in SH-SY5Y cells, Bioorg. Chem., 83, 468-476 https://doi.org/10.1016/j.bioorg.2018.11.008
  3. F. Rodrigues, P. D. Oliveria, J. Neves, B. Sarmento, M. H. Amaral, and M. B. Oliveira, Medicago spp. extracts as promising ingredients for skin care products, Ind. Crops Prod., 49, 634-644 (2013). https://doi.org/10.1016/j.indcrop.2013.06.015
  4. E. Gawel and M. Grzelak, Lucerne (Medicago sativa L.) in the human diet-Case reports and short reports, J. Herb. Med., 10, 8-16 (2017). https://doi.org/10.1016/j.hermed.2017.07.002
  5. G. Gatouillat, A. A. Magid, E. Bertin, E. B. Hassan, H. Morjani, C. Lavaud, and C. Madoulet, Medicarpin and millepurpan, two flavonoids isolated from Medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia P388 cells, Phytomedicine, 22, 1186-1194 (2015). https://doi.org/10.1016/j.phymed.2015.09.005
  6. R. Katarzyna, P. Pawel, W. Olga, G. Ryszard, and B. Boguslaw, Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry, Phytochem. Lett., 20, 520-539 (2016). https://doi.org/10.1016/j.phytol.2016.12.006
  7. E. Z. Attia, H. M. Farouk, R. A. Usama, and H. E. K. Momen, Antimicrobial and extracellular oxidative enzyme activities of endophytic fungi isolated from alfalfa (Medicago sativa L.) assisted by metabolic profiling, S. Afr. J. Bot., 134, 156-162 (2020). https://doi.org/10.1016/j.sajb.2019.12.003
  8. K. Ogino and M. Abe, Mixed surfactant systems: Solution properties of anionic-nonionic mixed surfactant systems, Marcel Dekker, Inc., 1-23 (1992).
  9. J. W. Baek, S. H. Chung, and G. S. Moon, Antimicrobial activities of ethanol extracts from korean bamboo culms and leaves, J. Food Sci. Technol., 34, 1073-1078 (2002).
  10. S. Hong and S. Lee, Extrction of natural emulsifier from Medicago sativa L. and Sapindus saponaria L.: Optimization using CCD-RSM, Appl. Chem. Eng., 33, 272-278 (2022). https://doi.org/10.14478/ACE.2022.1019
  11. C. Qian and D. J. McClements, Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size, Food Hydrocoll., 25, 1000-1008 (2011). https://doi.org/10.1016/j.foodhyd.2010.09.017
  12. M. Homayoonfal, F. Khodaiyan, and M. Mousavi, Modelling and optimising of physiocochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability, Food Chem., 174, 649-659 (2015). https://doi.org/10.1016/j.foodchem.2014.10.117
  13. B. S. Qader, E. E. Supeni, M. K. A. Ariffin, and A. R. A. Talib, RSM approach for modeling and optimization of designing parameters for inclined fins of solar air heater, Renew. Energy, 136, 48-68 https://doi.org/10.1016/j.renene.2018.12.099
  14. C. Yu, T. Cheng, J. Chen, Z. Ren, and M. Zeng, Investigation on thermal-hydraulic performance of parallel-flow shell and tube heat exchanger with a new type of anti-vibration baffle and wire coil using RSM method, Int. J. Therm. Sci., 138, 351-366 (2019).  https://doi.org/10.1016/j.ijthermalsci.2018.12.035