DOI QR코드

DOI QR Code

Measurement of Concentration of Highly Concentrated Samples and Reaction Kinetics through Color Analysis

광학적 색상 분석을 이용한 고농도 시료의 농도 및 반응 속도 측정법

  • Euna Lee (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Ji Woong Chang (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 이은아 (금오공과대학교 화학공학과) ;
  • 장지웅 (금오공과대학교 화학공학과)
  • Received : 2023.02.06
  • Accepted : 2023.02.14
  • Published : 2023.04.10

Abstract

We developed a method to measure the concentration of highly concentrated colored samples using color coordinates. We present a color analysis to estimate the concentration of highly concentrated binary solutions with an empirical function and apply it to estimate the kinetics of a catalytic irreversible reaction of resazurin to resorufin. The developed method enabled one to measure the concentration of solutions whose range of concentrations is nonlinear and beyond the limit of UV-vis spectroscopic measurement directly without dilution.

가시광선 영역에서 빛을 흡수하는 고농도 시료의 농도를 색상 좌표 값을 이용해 측정하는 법을 개발하였다. 이성분계 고농도 시료와 색상 좌표 사이의 관계식을 실험식으로 구하고 Resazurin에서 Resorufin으로의 촉매 반응 속도를 평가하였다. 제시한 방법은 자외선가시광선분광법에서 비선형적으로 측정범위 한계를 넘어선 영역의 농도를 시료를 희석하지 않고 직접 측정할 수 있다.

Keywords

Acknowledgement

이 연구는 2020년 국립대학 육성사업비로 지원되었음

References

  1. U. Pinkernell, S. Effkemann, and U. Karst, Simultaneous HPLC Determination of Peroxyacetic Acid and Hydrogen Peroxide, Anal. Chem., 69, 3623-3627 (1997). https://doi.org/10.1021/ac9701750
  2. B. L. Baldock and J. E. Hutchison, UV-visible spectroscopy-based quantification of unlabeled DNA bound to gold nanoparticles, Anal. Chem., 88, 12072-12080 (2016). https://doi.org/10.1021/acs.analchem.6b02640
  3. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis spectra, Anal. Chem., 79, 4215-4221 (2007). https://doi.org/10.1021/ac0702084
  4. A. Scheffer, C. Engelhard, M. Sperling, and W. Buscher, ICP-MS as a new tool for the determination of gold nanoparticles in bioanalytical applications, Anal. Bioanal. Chem., 390, 249-252 (2008). https://doi.org/10.1007/s00216-007-1576-5
  5. M. A. Rauf, M. A. Meetani, A. Khaleel, and A. Ahmed, Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS, Chem. Eng. J., 157, 373-378 (2010). https://doi.org/10.1016/j.cej.2009.11.017
  6. F. S. Rocha, A. J. Gomes, C. N. Lunardi, S. Kaliaguine, and G. S. Patience, Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis, Can. J. Chem. Eng., 96, 2512-2517 (2018). https://doi.org/10.1002/cjce.23344
  7. M. P. Patil, HPLC Method Development-A Review, J. Pharm. Edu. Res, 1, 243-260 (2017).
  8. K. Raval, and H. Patel, Review on common observed HPLC troubleshooting problems, Int. J. Pharm. Res. Health Sci., 8, 3195-3202 (2020). https://doi.org/10.21276/ijprhs.2020.04.02
  9. S. Deshmukh, G. Chavan, S. Vanjari, and R. Patil, A review on Anaytical method development ad validation by High Performance Liquid Chromatography Technique, J. Pharm. Sci. Res., 11, 3599-3605 (2019).
  10. J. Wolfender, HPLC in natural product analysis: the detection issue, Planta Med., 75, 719-734 (2009). https://doi.org/10.1055/s-0028-1088393
  11. B. P. Shah, S. Jain, K. K. Prajapati, and N. Y. Mansuri, Stability indicating HPLC method development: A Review, Int. J. Pharm. Sci. Res., 3, 2978-2988 (2012).
  12. M. R. Siddiqui, Z. A. AlOthman, N. Rahman, Analytical techniques in pharmaceutical analysis: A Review, Arab. J. Chem., 10, S1409-S1421 (2017). https://doi.org/10.1016/j.arabjc.2013.04.016
  13. J. W. Olesik, Elemental analysis using ICP-OES and ICP/MS, Anal. Chem., 63, 12A-21A (1991). https://doi.org/10.1021/ac00001a711
  14. S. D. Tanner, V. I. Baranov, and D. R. Bandura, Reaction cells and collision cells for ICP-MS: A tutorial review, Spectrochim. Acta B, 57, 1361-1452 (2002). https://doi.org/10.1016/S0584-8547(02)00069-1
  15. N. Jakubowski, L. Moens, and F. Vanhaecke, Sector field mass spectrometers in ICP-MS, Spectrochim. Acta, B, 53, 1739-1763 (1998). https://doi.org/10.1016/S0584-8547(98)00222-5
  16. B. Meermann and V. Nischwitz, ICP-MS for the analysis at the nanoscale - A tutorial review, J. Anal. At. Spectrom., 33, 1432-1468 (2018). https://doi.org/10.1039/c8ja00037a
  17. A. Beer, Determination of the absorption of red light in colored liquids, Annu. Rev. Phys. Chem., 162, 78-88 (1852). https://doi.org/10.1002/andp.18521620505
  18. M. Malik, K. Chan, and G. Azimi, Quantification of nickel, cobalt, and manganese concentration using ultraviolet-visible spectroscopy, RSC Adv., 11, 28014-28028 (2021). https://doi.org/10.1039/D1RA03962H
  19. X. Xiao, Y. Sun, W. Sun, H. Shen, H. Zheng, Y. Xu, J. Zhao, H. Wu, and C. Liu, Advanced treatment of actual textile dye wastewater by Fenton-flocculation process, Can. J. Chem. Eng., 95, 1245-1252 (2016). https://doi.org/10.1002/cjce.22752
  20. P. Quinlan, N. Grishkewich, and K. Tam, Removal of 2-naphthoxyacetic acid from aqueous solution using quaternized chitosan beads, Can. J. Chem. Eng., 95, 21-32 (2017). https://doi.org/10.1002/cjce.22594
  21. W. Giufrida, F. Voll, A. Feihrmann, M. Kunita, E. Madureira, M. Guilherme, D. Vedoy, V. Cabral, and L. Cardozo-Filho, Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology, Can. J. Chem. Eng., 94, 1336-1341 (2016). https://doi.org/10.1002/cjce.22511
  22. R. Brooker, C. Bell, L. Bonville, H. Kunz, and J. Fenton, Determining vanadium concentrations using the UV-Vis response method, J. Electrochem. Soc., 162, A608(2015).
  23. M. Soylak, B. Ozdemir, and E. Yilmaz, An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-vis spectrophotometry, Spectrochim. Acta A, 243, 118806 (2020).
  24. G. Verma and M. Mishra, Development and optimization of UV-Vis spectroscopy-A review, World J. Pharm. Res., 7, 1170-1180 (2018).
  25. F. Rocha, A. Gomes, C. Lunardi, S. Kaliaguine, and G. Patience, Experimental methods in chemical engineering: ultraviolet visible spectroscopy-UV-Vis, Can. J. Chem. Eng., 96, 2512-2517 (2018). https://doi.org/10.1002/cjce.23344
  26. S. L. Upstone, Ultraviolet/visible light absorption spectrophotometry in clinical chemistry, In: R. A. Meyers (ed.). Encyclopedia of Analytical Chemistry, 1699-1714, John Wiley & Sons Ltd, Chichester, UK (2000).
  27. M. Xia, L. Wang, Z. Yang, and H. Chen, A novel digital color analysis method for rapid glucose detection, Anal. Methods, 7, 6654-6663 (2015). https://doi.org/10.1039/C5AY01233C
  28. A. Al-Naji, A. B. Fakhri, S. K. Gharghan, and J. Chahl, Soil color analysis based on a RGB camera and an artificial neural network towards smart irrigation: A pilot study, Heliyon, 7, e06078 (2021).
  29. N. Phuangsaijai, J. Jakmunee, and S. Kittiwachana. Investigation into the predictive performance of colorimetric sensor strips using RGB, CMYK, HSV, and CIELAB coupled with various data preprocessing methods: A case study on an analysis of water quality parameters, J. Anal. Sci. Technol., 12, 1-16 (2020). https://doi.org/10.1186/s40543-020-00255-1
  30. F. Kulapichitr, C. Borompichaichartkul, M. Fang, I. Suppavorasatit, and K. R. Cadwallader, Effect of post-harvest drying process on chlorogenic acids, antioxidant activities and CIE-Lab color of Thai Arabica green coffee beans, Food Chem., 366, 130504 (2022).
  31. S. Simoncelli, E. L. Pensa, T. Brick, J. Gargiulo, A. Lauri, J. Cambiasso, Y. Li, S. A. Maier, and E. Cortes, Monitoring Plasmonic Hot-Carrier Chemical Reactions at the Single Particle Level, Faraday Discuss., 214, 73-87 (2019). https://doi.org/10.1039/c8fd00138c
  32. N. Dietrich, K. Loubiere, M. Jimenez, G. Hebrard, and C. Gourdon, A new direct technique for visualizing and measuring gas-liquid mass transfer around bubbles moving in a straight millimetric square channel, Chem. Eng. Sci., 100, 172-182 (2013). https://doi.org/10.1016/j.ces.2013.03.041
  33. E. Lee and J. W. Chang, Evaluation of Concentration and Reaction Kinetics through Color Analyses, App. Chem. Eng., 33, 279-283 (2022). https://doi.org/10.14478/ACE.2022.1024
  34. R. Das, Wavelength-and frequency-dependent formulations of wien's displacement law, J. Chem. Educ., 92, 1130-1134 (2015). https://doi.org/10.1021/acs.jchemed.5b00116
  35. Y. J. Park, and J. W. Chang, Resazurin redox reaction mechanism using silver nanoparticles synthesized with monosaccharides and disaccharides, App. Chem., Eng., 31, 229-304 (2020).