DOI QR코드

DOI QR Code

폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha

  • 김기덕 (한국에너지기술연구원 기후변화연구본부) ;
  • 권은희 (한국에너지기술연구원 기후변화연구본부) ;
  • 김광호 (한국에너지기술연구원 기후변화연구본부) ;
  • 임석현 (한국에너지기술연구원 기후변화연구본부) ;
  • ;
  • 고강석 (한국에너지기술연구원 기후변화연구본부) ;
  • 전상구 (한국에너지기술연구원 기후변화연구본부) ;
  • 노남선 (한국에너지기술연구원 기후변화연구본부)
  • Ki-Duk Kim (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Eun Hee Kwon (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kwang Ho Kim (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Suk Hyun Lim (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Hai Hung Pham (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kang Seok Go (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Sang Goo Jeon (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Nam Sun Nho (Climate Change Research Division, Korea Institute of Energy Research)
  • 투고 : 2022.10.26
  • 심사 : 2023.02.04
  • 발행 : 2023.04.10

초록

플라스틱의 폐기물 및 화학원료로의 재활용 분야에 대한 사회적 관심이 급격히 높아지고 있는 상황에서, 폐플라스틱 열분해유를 이용한 납사 생산은 가장 기술 장벽을 낮춰 시대적 요구에 가장 빠르게 대응할 수 있는 방법이다. 따라서 본 연구에서는 폐플라스틱 열분해유를 이용한 수첨처리, 수첨분해에 대한 연구를 진행하였다. 자세하게는 수첨처리를 통한 불순물 제거, 수첨분해를 통한 납사 수율 증대를 목적으로 연구를 진행하였다. 그 결과 폐플라스틱 열분해유 중 200 ℃ 이하의 비점을 가지는 납사유분은 황화물계 촉매를 이용한 370 ℃, 2시간 조건에서의 수첨처리를 통해 90 wt% 이상의 황 및 질소 전환율, 염소의 경우 거의 100 wt%에 가까운 전환율을 확인하였고, 200 ℃ 이상 비점을 가지는 폐플라스틱 열분해 중질유분은 NiMo/ZSM-5 촉매를 이용한 400 ℃, 2시간의 수첨분해를 통해 35.7 wt%의 납사 수율을 얻을 수 있음을 확인하였다.

In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

키워드

과제정보

이 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 연구임 (과제명 : 1 ton/day 규모 폐플라스틱 열분해유의 촉매화학적 업그레이딩을 통한 나프타 원료생산 기술 개발, 과제 번호 : 20015430)

참고문헌

  1. Korea Environment Corporation, National waste generation and treatment status (2021).
  2. K. Ragaert, L. Delva, and K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste Manag., 69, 24-58 (2017). https://doi.org/10.1016/j.wasman.2017.07.044
  3. S. M. Al-Salem, P. Lettieri, and J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review, Waste Manag., 29, 2625-2643 (2009). https://doi.org/10.1016/j.wasman.2009.06.004
  4. T. Thiounn and R. C. Smith, Advances and approaches for chemical recycling of plastic waste, J. Polym. Sci., 58, 1347-1364 (2020). https://doi.org/10.1002/pol.20190261
  5. M. Solis and S. Silveira, Technologies for chemical recycling of household plastics - A technical review and TRL assessment, Waste Manag., 105, 128-138 (2020). https://doi.org/10.1016/j.wasman.2020.01.038
  6. E. Rodriguez, G. Felix, J. Ancheyta, and F. Trejo, Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons, Fuel, 225, 118-133 (2018). https://doi.org/10.1016/j.fuel.2018.02.085
  7. G.-N. Yun, K.-D. Kim, and Y.-K. Lee, Hydrotreating of waste tire pyrolysis oil over highly dispersed Ni2P catalyst supported on SBA-15, Catalysts, 11, 1272 (2021).
  8. X. Liu, J. Chen, and J. Zhang, Hydrodechlorination of chlorobenzene over silica-supported nickel phosphide catalysts, Ind. Eng. Chem. Res., 47, 5362-5368 (2008). https://doi.org/10.1021/ie7017542
  9. J. Chen, L. Sun, R. Wang, and J. Zhang, Hydrodechlorination of chlorobenzene over Ni2P/SiO2 catalysts: Influence of Ni2P loading, Catal. Lett., 133, 346-353 (2009). https://doi.org/10.1007/s10562-009-0191-9
  10. C. Amorim, G. Yuan, P. Patterson, and M. Keane, Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon, J. Catal., 234, 268-281 (2005). https://doi.org/10.1016/j.jcat.2005.06.019
  11. L. Ma. Gomez-Sainero, X. L. Seoane, J. L. G. Fierro, and A. Arcoya, Liquid-phase hydrodechlorination of CCl4 to CHCl3 on Pd/Carbon catalysts: Nature and role of Pd active species, J. Catal., 209, 279-288 (2002). https://doi.org/10.1006/jcat.2002.3655
  12. S. Y. Kim, H. C. Choi, O B. Yanga. K. H. Lee, J. S. Lee, and Y. G. Kim, Hydrodechlorination of tetrachloromethane over supported Pt catalysts, J. Chem. Soc. Chem. Commun., 1995, 2169- 2170 (1995). https://doi.org/10.1039/C39950002169
  13. H. S. Joo and J. A. Guin, Hydrocracking of a plastics pyrolysis gas oil to naphtha, Energy Fuels, 11, 586-592 (1997). https://doi.org/10.1021/ef960151g
  14. J. Weitkamp, Catalytic hydrocracking-mechanisms and versatility of the process, ChemCatChem, 4, 292-306 (2012). https://doi.org/10.1002/cctc.201100315
  15. D. Munir, M. F. Irfan, and M. R. Usman, Hydrocracking of virgin and waste plastics: A detailed review, Renew. Sustain. Energy Rev., 90, 490-515 (2018). https://doi.org/10.1016/j.rser.2018.03.034
  16. T. C. Ho, Deep HDS of diesel fuel: Chemistry and catalysis, Catal. Today, 98, 3-18 (2004). https://doi.org/10.1016/j.cattod.2004.07.048
  17. J. Kim, J.-G. Jang, and Y.-K. Lee, Reactivity of sulfur compounds in FCC decant oils for hydrodesulfurization over CoMoS2/Al2O3 catalysts, Korean J. Chem. Eng., 38, 1179-1187 (2021). https://doi.org/10.1007/s11814-021-0763-y
  18. J. L. Garcia-Gutierrez, G. C. Laredo, G. A. Fuentes, P. GarciaGutierrez, and F. EJimenez-Cruz, ffect of nitrogen compounds in the hydrodesulfurization of straight-run gas oil using a CoMoP/g-Al2O3 catalyst, Fuel, 138, 98-103 (2014). https://doi.org/10.1016/j.fuel.2014.08.008
  19. G. C. Laredo, E. Altamirano, and J. A. De los Reyes, Inhibition effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: Part 2, Appl. Catal. A: Gen., 243, 207-214 (2003). https://doi.org/10.1016/S0926-860X(02)00321-6
  20. J. Yu, L. Sun, C. Ma, Y. Qiao, and H. Yao, Thermal degradation of PVC: A review, Waste Manag., 48, 300-314 (2016). https://doi.org/10.1016/j.wasman.2015.11.041