DOI QR코드

DOI QR Code

Graph Assisted Resource Allocation for Energy Efficient IoT Computing

  • Mohammed, Alkhathami (Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU))
  • Received : 2023.01.05
  • Published : 2023.01.30

Abstract

Resource allocation is one of the top challenges in Internet of Things (IoT) networks. This is due to the scarcity of computing, energy and communication resources in IoT devices. As a result, IoT devices that are not using efficient algorithms for resource allocation may cause applications to fail and devices to get shut down. Owing to this challenge, this paper proposes a novel algorithm for managing computing resources in IoT network. The fog computing devices are placed near the network edge and IoT devices send their large tasks to them for computing. The goal of the algorithm is to conserve energy of both IoT nodes and the fog nodes such that all tasks are computed within a deadline. A bi-partite graph-based algorithm is proposed for stable matching of tasks and fog node computing units. The output of the algorithm is a stable mapping between the IoT tasks and fog computing units. Simulation results are conducted to evaluate the performance of the proposed algorithm which proves the improvement in terms of energy efficiency and task delay.

Keywords

References

  1. Z. Liu, Y. Yang, K. Wang, Z. Shao and J. Zhang, "POST: Parallel Offloading of Splittable Tasks in Heterogeneous Fog Networks," in IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3170-3183, April 2020, doi: 10.1109/JIOT.2020.2965566. 
  2. S. Zeadally, M. A. Javed and E. B. Hamida, "Vehicular Communications for ITS: Standardization and Challenges," in IEEE Communications Standards Magazine, vol. 4, no. 1, pp. 11-17, March 2020, doi: 10.1109/MCOMSTD.001.1900044. 
  3. U. M. Malik, M. A. Javed, S. Zeadally and S. u. Islam, "Energy-Efficient Fog Computing for 6G-Enabled Massive IoT: Recent Trends and Future Opportunities," in IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14572-14594, 15 Aug.15, 2022, doi: 10.1109/JIOT.2021.3068056. 
  4. J. Mirza, B. Ali and M. A. Javed, "Stable Matching for Selection of Intelligent Reflecting Surfaces in Multiuser MISO Systems," in IEEE Communications Letters, vol. 25, no. 8, pp. 2748-2752, Aug. 2021, doi: 10.1109/LCOMM.2021.3083485. 
  5. M. A. Javed et al., "ODPV: An Efficient Protocol to Mitigate Data Integrity Attacks in Intelligent Transport Systems," in IEEE Access, vol. 8, pp. 114733-114740, 2020, doi: 10.1109/ACCESS.2020.3004444. 
  6. M. A. Javed, T. N. Nguyen, J. Mirza, J. Ahmed and B. Ali, "Reliable Communications for Cybertwin-Driven 6G IoVs Using Intelligent Reflecting Surfaces," in IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 7454-7462, Nov. 2022, doi: 10.1109/TII.2022.3151773. 
  7. Alvi, A.N.; Javed, M.A.; Hasanat, M.H.A.; Khan, M.B.; Saudagar, A.K.J.; Alkhathami, M.; Farooq, U. Intelligent Task Offloading in Fog Computing Based Vehicular Networks. Appl. Sci. 2022, 12, 4521. https://doi.org/10.3390/app12094521 
  8. F. Jameel, M. A. Javed, S. Zeadally and R. Jantti, "Secure Transmission in Cellular V2X Communications Using Deep Q-Learning," in IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 17167-17176, Oct. 2022, doi: 10.1109/TITS.2022.3165791. 
  9. G. Li, P. Wang, T. Yang and H. Che, "Secrecy Sum-Rate Enhancement for NOMA-VLC System With Pseudo User," in IEEE Communications Letters, vol. 27, no. 1, pp. 243-247, Jan. 2023, doi: 10.1109/LCOMM.2022.3220231. 
  10. R. Sun, B. Yang, Y. Shen, X. Jiang and T. Taleb, "Covertness and Secrecy Study in Untrusted Relay-Assisted D2D Networks," in IEEE Internet of Things Journal, vol. 10, no. 1, pp. 17-30, 1 Jan.1, 2023, doi: 10.1109/JIOT.2022.3201021. 
  11. H. Sharma, N. Kumar and R. K. Tekchandani, "SecBoost: Secrecy-Aware Deep Reinforcement Learning Based Energy-Efficient Scheme for 5G HetNets," in IEEE Transactions on Mobile Computing, doi: 10.1109/TMC.2023.3235429. 
  12. Y. Jiang and Y. Zou, "Secrecy Energy Efficiency Maximization for Multi-User Multi-Eavesdropper Cell-Free Massive MIMO Networks," in IEEE Transactions on Vehicular Technology, doi: 10.1109/TVT.2022.3229742. 
  13. Javed, M.A., Ngo, D.T. & Khan, J.Y. A multi-hop broadcast protocol design for emergency warning notification in highway VANETs. J Wireless Com Network 2014, 179 (2014). https://doi.org/10.1186/1687-1499-2014-179. 
  14. Lei Liu, Chen Chen, Tie Qiu, Mengyuan Zhang, Siyu Li, Bin Zhou, A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs, Vehicular Communications, Volume 13, 2018, Pages 78-88, ISSN 2214-2096, https://doi.org/10.1016/j.vehcom.2018.05.002. 
  15. G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang and M. -T. Zhou, "FEMTO: Fair and Energy-Minimized Task Offloading for Fog-Enabled IoT Networks," in IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4388-4400, June 2019, doi: 10.1109/JIOT.2018.2887229. 
  16. M. Mukherjee et al., "Task Data Offloading and Resource Allocation in Fog Computing With Multi-Task Delay Guarantee," in IEEE Access, vol. 7, pp. 152911-152918, 2019, doi: 10.1109/ACCESS.2019.2941741. 
  17. M. A. Javed, N. S. Nafi, S. Basheer, M. Aysha Bivi and A. K. Bashir, "Fog-Assisted Cooperative Protocol for Traffic Message Transmission in Vehicular Networks," in IEEE Access, vol. 7, pp. 166148-166156, 2019, doi: 10.1109/ACCESS.2019.2953529. 
  18. H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq and D. -S. Kim, "Reinforcement learning based resource management for fog computing environment: Literature review, challenges, and open issues," in Journal of Communications and Networks, vol. 24, no. 1, pp. 83-98, Feb. 2022, doi: 10.23919/JCN.2021.000041. 
  19. J. Ren, J. Li, H. Liu and T. Qin, "Task offloading strategy with emergency handling and blockchain security in SDN-empowered and fog-assisted healthcare IoT," in Tsinghua Science and Technology, vol. 27, no. 4, pp. 760-776, Aug. 2022, doi: 10.26599/TST.2021.9010046. 
  20. M. Adhikari, M. Mukherjee and S. N. Srirama, "DPTO: A Deadline and Priority-Aware Task Offloading in Fog Computing Framework Leveraging Multilevel Feedback Queueing," in IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5773-5782, July 2020, doi: 10.1109/JIOT.2019.2946426. 
  21. C. Swain et al., "METO: Matching-Theory-Based Efficient Task Offloading in IoT-Fog Interconnection Networks," in IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12705-12715, 15 Aug.15, 2021, doi: 10.1109/JIOT.2020.3025631. 
  22. A. N. Alvi et al., "OGMAD: Optimal GTS-Allocation Mechanism for Adaptive Data Requirements in IEEE 802.15.4 Based Internet of Things," in IEEE Access, vol. 7, pp. 170629-170639, 2019, doi: 10.1109/ACCESS.2019.2955544. 
  23. U. M. Malik, M. A. Javed, J. Frnda and J. Nedoma, "SMRETO: Stable Matching for Reliable and Efficient Task Offloading in Fog-Enabled IoT Networks," in IEEE Access, vol. 10, pp. 111579-111590, 2022, doi: 10.1109/ACCESS.2022.3215555. 
  24. Malik, U.M.; Javed, M.A.; Frnda, J.; Rozhon, J.; Khan, W.U. Efficient Matching-Based Parallel Task Offloading in IoT Networks. Sensors 2022, 22, 6906. https://doi.org/10.3390/s22186906. 
  25. M. W. Shabir, T. N. Nguyen, J. Mirza, B. Ali and M. A. Javed, "Transmit and Reflect Beamforming for Max-Min SINR in IRS-Aided MIMO Vehicular Networks," in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2022.3151135. 
  26. Hira Tariq, Muhammad Awais Javed, Ahmad Naseem Alvi, Mozaherul Hoque Abul Hasanat, Muhammad Badruddin Khan, Abdul Khader Jilani Saudagar, Mohammed Alkhathami, "AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles", Journal of Sensors, vol. 2022, Article ID 4173346, 14 pages, 2022. https://doi.org/10.1155/2022/4173346. 
  27. A. N. Alvi, M. A. Javed, M. H. A. Hasanat, M. B. Khan, A. K. J. Saudagar et al., "An optimized offloaded task execution for smart cities applications," Computers, Materials & Continua, vol. 74, no.3, pp. 6321-6334, 2023. https://doi.org/10.32604/cmc.2023.029913