DOI QR코드

DOI QR Code

A Study on the Correlation between the Harmful Cyanobacterial Density and Phycocyanin Concentration at Recreational Sites in Nakdong River

낙동강 친수활동구간 유해 남조류 분포와 피코시아닌(Phycocyanin) 농도 상관성에 관한 연구

  • Hyo-Jin Kim (Busan Metropolitan City Institute of Health & Environment) ;
  • Min-Kyeong Kim (Busan Metropolitan City Institute of Health & Environment)
  • 김효진 (부산광역시 보건환경연구원) ;
  • 김민경 (부산광역시 보건환경연구원)
  • Received : 2023.09.19
  • Accepted : 2023.11.20
  • Published : 2023.11.30

Abstract

Harmful cyanobacterial monitoring is time-consuming and requires skilled professionals. Recently, Phycocyanin, the accessory pigment unique to freshwater cyanobacteria, has been proposed as an indicator for the presence of cyanobacteria, with the advantage of rapid and simple measurement. The purpose of this research was to evaluate the correlation between the harmful cyanobacterial cell density and the concentration of phycocyanin and to consider how to use the real-time water quality monitoring system for algae bloom monitoring. In the downstream of the Nakdong River, Microcystis spp. showed maximum cell density (99 %) in harmful cyanobacteria (four target genera). A strong correlation between phycocyanin(measured in the laboratory) concentrations and harmful cyanobacterial cell density was observed (r = 0.90, p < 0.001), while a weaker relationship (r = 0.65, p < 0.001) resulted between chlorophyll a concentration and harmful cyanobacterial cell density. As a result of comparing the phycocyanin concentration (measured in submersible fluorescence sensor) and harmful cyanobacterial cell density, the error range increased as the number of cyanobacteria cells increased. Before opening the estuary bank, the diurnal variations of phycocyanin concentrations did not mix by depth, and in the case of the surface layer, a pattern of increase and decrease over time was shown. This study is the result of analysis when Microcystis spp. is dominant in downstream of Nakdong River in summer, therefore the correlation between the harmful cyanobacteria density and phycocyanin concentrations should be more generalized through spatio-temporal expansion.

Keywords

Acknowledgement

The authors are grateful to the Republic of Korea National Institute of Environmental Research (NIER) who funded the research reported in this paper.

References

  1. Ahn, C. Y., Joung, S. H., Yoon, S. K., and Oh, H. M. (2007). Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant, The Journal of Microbiology, 45(2), 98-104. 
  2. Bennett, A. and Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga, The Journal of Cell Biology, 58(2), 419-435.  https://doi.org/10.1083/jcb.58.2.419
  3. Bowling, L., Ryan, D., Holliday, J., and Honeyman, G. (2013). Evaluation of in situ fluorometry to determine cyanobacterial abundance in the Murray and Lower Daring rivers, Australia, River Research and Applications, 29(8), 1059-1071.  https://doi.org/10.1002/rra.2601
  4. Eullaffroy, P. and Vernet, G. (2003). The F684/F735 chlorophyll fluorescence ratio; A potential tool for rapid detection and determination of herbicide phytotoxicity in algae, Water Research, 37, 1983-1990. 
  5. Gallon, J. R. (1992). Tansley review No. 44. Reconciling the incompatible: N2 fixation and O2, New Phytology, 122(4), 571-609.  https://doi.org/10.1111/j.1469-8137.1992.tb00087.x
  6. Ha, R., Shin, H. J., Nam, G. B., Park, S. H., Kang, T. G., Song, H. O., and Lee, H. (2016). A study on comparison of phycocyanin extraction methods for hyperspectral remote sensing of cyanobacteria in turbid inland waters, Journal of Korean Society on Water Environment, 32(6), 520-527. [Korean Literature]  https://doi.org/10.15681/KSWE.2016.32.6.520
  7. Hammer, U. T. (1964). The succession of bloom species of blue-green algae and some causal factors, Internationale Vereinigung fur Theoretische und Angewandte Limnologie: Verhandlungen, 15, 829-836. 
  8. Horne, A. J. and Goldman, C. R. (1994). Limnology, 2nd Ed., McGraw-Hill, Inc., New York.. 
  9. Lee, S. J. (2022). Cyanobacterial blooming toxin pollution that threatens public health, What are the measures?, Urgent discussion on detection of cyanotoxins from crops to tap water, 96. https://ampos.nanet.go.kr:7443/materialSeminarDetail.do?control_no=PAMP10000000070229 [Korean Literature] 
  10. Lichtenthaler, H. K. (1988). Application of chlorophyll fluorescence, Dordrecht, Kluwer Academic Publishers, 384. 
  11. Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments; spectrophotometric equations, Limnology and Oceanography, 12, 343-346.  https://doi.org/10.4319/lo.1967.12.2.0343
  12. Ministry of Environment (ME). (2010). Development of pre-treatment built-in type fluorometer for distinguishing defferent types of taxonomic algae and determining chlorophyll concentration, Ministry of Environment. [Korean Literature] 
  13. Ministry of Environment (ME). (2014). Resource book for the cyanobacteria information in Nakdong river, Ministry of Environment. [Korean Literature] 
  14. Ministry of Environment (ME). (2022). Standard method for the examination of water pollution, Ministry of Environment. [Korean Literature] 
  15. National Institute of Environmental Research (NIER). (2020). Operating manual of harmful algae alert system, National Institute of Environmental Research, Incheon, Korea. [KoreanLiterature] 
  16. Park, H. K., Shin, R. Y., Lee, H., Lee, K. L., and Cheon, S. U. (2015). Spatio-temporal characteristics of cyanobacterial communities in the middle-downstream of Nakdong river and lake Dukdong, Journal of Korean Society on Water Environment, 31(3), 286-294. [Korean Literature] 
  17. Park, J. G., Kim, Y. S., Lee, J. J., Jang, S. H., and Lee, J. H. (2006). Diel vertical distribution of cyanobacteria in lake Daecheong, ALGAE, 21(1), 75-82. [Korean Literature]  https://doi.org/10.4490/ALGAE.2006.21.1.075
  18. Reynolds, C. S. (1973). Growth and buoyancy of microcystis aeruginosa Kotz. emend. Elenkin in a shallow eutrophic lake, Preceedings of the Royal Society of London B., 184, 29-50. 
  19. Reynolds, C. S. and Walsby, A. E. (1975). Water-blooms, Biological Reviews, 50, 437-481.  https://doi.org/10.1111/j.1469-185X.1975.tb01060.x
  20. Richards F. A. and Thompson T. G. (1952). The estimation and characterization of planktonic population by pigment analysis. A spectrophotometric method for the estimation of plankton pigments, Journal of Marine Research, 11, 156-172. 
  21. Rousso, B. Z., Bertone, E., Stewart, R., Aguiar, A., Chuang, A., Hamilton, D. P., and Burford, M. A. (2022). Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: Effects of morphology, cell size and growth phase, Water Research, 212, 118-127. 
  22. Sarada R., Pillai M. G., and Ravishankar G. A. (1999). Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin, Process Biochemistry, 34, 795-801.  https://doi.org/10.1016/S0032-9592(98)00153-8
  23. Whitton, B. A. (2012). The ecology of Cyanobacteria II: Their diversity in time and space, Springer, Dordrecht, the Netherlands.