DOI QR코드

DOI QR Code

3차원 수리 모델을 이용한 영산강 수질오염물질의 수체 내 거동 특성 분석

Analysis of Behavior Characteristics of Water Pollutants in Yeongsan River Using 3D Hydraulic Model

  • 오혜연 (이화여자대학교 환경공학과) ;
  • 김은정 (서울물연구원 수질연구과) ;
  • 최정현 (이화여자대학교 환경공학과)
  • Hye Yeon Oh (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Eun Jung Kim (Water Quality Research Division, Seoul Water Institute) ;
  • Jung Hyun Choi (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2023.08.28
  • 심사 : 2023.11.01
  • 발행 : 2023.11.30

초록

The Yeongsan River, a major water resource for Jeollanam-do, that is adjacent to industrial complexes and agricultural areas, is exposed to water pollution. Therefore, it is necessary to investigate the impact of water pollution incidences and prepare response systems for river environment safety for other water resources in the future. Environmental Fluid Dynamics Code (EFDC) was applied to the mainstream of the Yeongsan River where residential, commercial, and agricultural areas are located to analyze the behavior of pollutants conducting the scenario analysis. Considering the pollutants that affected the study area, two pollutants, oil and benzene, with different physical and chemical characteristics were selected for the analysis. As a result of comparing the actual and simulated values of the water elevation, temperature, and flow rate, it was confirmed that the model adequately reproduced the hydraulic characteristics of the Yeongsan River. The oil flow dynamics showed that an increase in flow rate led to reduction in the maximum height of the slick. Notably, the behavior of the oil was predominantly influenced by the wind conditions. In the case of benzene, lower flow scenarios exhibited decreased arrival times and residence times accompanied by an elevation in the maximum concentration levels. From the results of pollutant behavior in the study area, it is feasible to utilize the section of tributary confluence for collection and the weir area for dilution. This study enhances the understanding of the pollutant's behavior with different characteristics and develops effective control systems tailored to the physicochemical attributes of pollutants.

키워드

과제정보

이 논문은 2018년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(2018R1A6A1A08025520)

참고문헌

  1. Cho, Y. J. (2017). Gwangju, Pungyeongjeongcheon oil spill accident 'quick initial response', field News, http://www.fieldnews.co.kr/news/articleView.html?idxno=424 (accessed 2017, March 26). [Korean Literature] 
  2. Choi, H. G., Park, J. H., and Yeun, H. K. (2014). Simulation of water pollution accident with water quality model, Journal of Environmental Impact Assessment, 23(3), 177-186. [Korean Literature]  https://doi.org/10.14249/eia.2014.23.3.177
  3. Choi, Y. G. (2017). Gwangju, Pungyeongjeongcheon rapid response to water pollution accidents, Daehan News, http://www.dhns.co.kr/news/articleView.html?idxno=167980 (accessed 2017, March 26). [Korean Literature] 
  4. Chong, S., Yi, H. S., Hwang, H. S., and Kim, H. J. (2015). Modeling the flushing effect of multi-purpose weir operation on algae removal in Yeongsan river, Journal of Korean Society of Environmental Engineers, 37(10), 563-572. [Korean Literature]  https://doi.org/10.4491/KSEE.2015.37.10.563
  5. DSI LLC. (2023). EFDC+ Theory, Version 11., Published by DSI LLC, Edmonds WA. Available at https://www.eemodelingsystem.com/wp-content/Download/Documentation/EFDC_Theory_Document_Ver_11.pdf 
  6. Guo, G. and Cheng, G. (2019). Mathematical modelling and application for simulation of water pollution accidents, Process Safety and Environmental Protection, 127, 189-196.  https://doi.org/10.1016/j.psep.2019.05.012
  7. Heo, K. W. (2023). 'Oil spill' in Pungyeongjeongcheon, Gwangsan-gu, Gwangju... Inflow into the river by heavy rain, The Namdo Ilbo, https://www.namdonews.com/news/articleView.html?idxno=723542 (accessed 2023, May 6). [Korean Literature] 
  8. Hwang, S., Shin, S. B., Song, J. H., Yoon, K. S., and Kang, M. S. (2018). Simulating arsenic concentration changes in small agricultrual reservoir using EFDC-WASP linkage model, Journal of the Korean Society of Agricultural Engineers, 60(5), 29-40. [Korean Literature] 
  9. Jang, J., Jong, J., Mun, H., Kim, K., and Seo, I. (2016). Mixing analysis of oil spilled into the river by GPS-equipped drifter experiment and numerical modeling, Journal of Korean Society on Water Environment, 32(3), 243-252. [Korean Literature]  https://doi.org/10.15681/KSWE.2016.32.3.243
  10. Kim, E., Park, C ., Na, M., Park, H., and Kim, B. (2018). Impact analysis of tributaries and simulation of water pollution accident scenarios in the water source section of Han river using 3-D hydrodynamic model, Journal of Korean Society on Water Environment, 34(4), 363-374. [Korean Literature] 
  11. Kim, J. W. and Cho, Y. G. (2021). A study on the short-term water quality change in the lower Yeongsan river, Journal of the Korean Society for Marine Environment & Energy, 24 (2), 72-79. [Korean Literature]  https://doi.org/10.7846/JKOSMEE.2021.24.2.72
  12. Kim, J., Kim, J., and Seo, D. (2020). Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan river using EFDC, Journal of Korea Water Resources Association, 53(5), 369-381. [Korean Literature] 
  13. Kim, J., Kim, M., and Cho, Y. (2021). Assessment of relationship between sediment-discharge based on rainfall characteristic using SWAT model, Journal of Soil and Groundwater Environment, 26(6), 118-129 [Korean Literature] 
  14. Korea Environment Corporation (K-eco). (2017). Revision of self-control guidebook for efficient response to water pollution accidents, Water Pollution Control Team, 88. [Korean Literature] 
  15. Korea Environment Corporation(K-eco). (2023). My Water, https://www.water.or.kr/kor/menu/sub.do?menuId=16_183_186_188 (accessed Aug. 2023). 
  16. Lee, H. S., Lee, J. M., Han, E. J., and Kim, Y. D. (2019). A study on the validation of hydraulic model using lagrangian GPS floater, Journal of Korea Water Resources Association, 52(12), 1047-1055. [Korean Literature]  https://doi.org/10.3741/JKWRA.2019.52.12.1047
  17. Lee, J. K., Kim, T. O., and Jung, Y. J. (2013). Analysis of domestic water pollution accident and response management, Journal of Wetlands Research, 15(4), 529-534. [Korean Literature]  https://doi.org/10.17663/JWR.2013.15.4.529
  18. Lee, J., Bae, S., Lee, D. R., and Seo, D. (2014). Transportation modeling of conservative pollutant in a river with weirs - The Nakdong river case, Journal of Korean Society of Environmental Engineers, 36(12), 821-827. [Korean Literature]  https://doi.org/10.4491/KSEE.2014.36.12.821
  19. Ministry of Environment (ME). (2019). Youngsan river environmental management office, Oil spill response training implementation, Youngsanriver Environmental Management Office Aquatic Ecology Management Department press release (2019. Aug. 29). [Korean Literature] 
  20. Ministry of Environment (ME). (2022). Youngsan river environmental management office, Conducting collaborative training for water quality pollution incidents - Examination of interagency cooperation system and strengthening incident response capabilities among relevant organizations, Youngsanriver Environmental Management Office Aquatic Ecology Management Department press release (2022. Nov. 17). [Korean Literature] 
  21. Ministry of Environment and, Korea Environment Corporation (ME and K-eco). (2022). 2021 Annual report on water pollution accidents and responses, 11-1480000-001505-10, Ministry of Environment and, Korea Environment Corporation, 3-15. [Korean Literature] 
  22. Ministry of Environment (ME). (2023). Comprehensive chemical information system, https://icis.me.go.kr/pageLink.do (accessed Aug. 2023) 
  23. Ministry of Land, Transport and Maritime Affairs (MLTMA). (2011). Yeongsan river(upstream) river master plan Report, 1-1611425-000017-01, Iksan Construction and Management Administration. [Korean Literature] 
  24. Mun, H. S., Jang, J. H., Ryu, I. G., and Kim, J. Y. (2012). Development of web based realtime water pollution accident response management system in rivers, Journal of the Korean Society of Hazard Mitigation, 12(2), 145-150. [Korean Literature]  https://doi.org/10.9798/KOSHAM.2012.12.2.145
  25. Mun, H. Y., Kang, T. G., Lee, S. W., Na, E. H., Lee, H., Park, S. Y., Jang, J. H., and Jong, J. H. (2013). Transport and scenario modeling of oil spill in the Nakdong river, National Institue of Environmental Research. [Korean Literature] 
  26. Nash, J. E. and Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles, Journal of Hydrology, 10(3), 282-290.  https://doi.org/10.1016/0022-1694(70)90255-6
  27. Shim, S. H., Kim, Y. H., Lee, H. W., Kim, M., and Choi, J. H. (2022). Comparison of Chlorophyll-a prediction and analysis of influential factors in Yeongsan river using machine learning and deep learning, Journal of Korean Society on Water Environment, 38(6), 292-305. [Korean Literature] 
  28. Shin, C. M., Kim, D., and Song, Y. (2019). Analysis of hydraulic characteristics of Yeongsan river and estuary using EFDC model, Journal of Korean Society on Water Environment, 35(6), 580-588. [Korean Literature]  https://doi.org/10.15681/KSWE.2019.35.6.580
  29. Son, M. S., Park, J. H., Lim, C. H., Kim, S. K., and Lim, B. J. (2013). Seasonal change of phytoplankton community and water quality in Yeongsan river watershed, Korean Journal of Environmental Biology, 31(2), 105-112. [Korean Literature]  https://doi.org/10.11626/KJEB.2013.31.2.105
  30. Yoon, J. C. (2023). The Namdo Ilbo, https://www.namdonews.com/news/articleView.html?idxno=723550 (2023. Aug. 29). 
  31. Yu, S. B. (2022). Gwangju Dream, http://www.gjdream.com (2023. Aug. 29).