DOI QR코드

DOI QR Code

Polarization Insensitive CWDM Optical Demultiplexer Based on Polarization Splitter-rotator and Delayed Interferometric Optical Filter

  • Seok-Hwan Jeong (Department of Electronic Materials Engineering, The University of Suwon) ;
  • Heuk Park (Network Research Division, Electronics and Telecommunications Research Institute) ;
  • Joon Ki Lee (Network Research Division, Electronics and Telecommunications Research Institute)
  • Received : 2022.10.17
  • Accepted : 2023.02.13
  • Published : 2023.04.25

Abstract

We theoretically analyze and experimentally demonstrate a polarization-diversified four-channel optical demultiplexer (DeMUX) comprising a hybrid mode conversion-type polarization splitter rotator (PSR) and delayed Mach-Zehnder interferometer optical DeMUX for use in coarse wavelength division multiplexing (CWDM)-based optical interconnect applications. The Si wire-based device fabricated by a complementary metal-oxide semiconductor-compatible process exhibited nearly the same filter spectral response irrespective of the input polarization state under the PSR. The device had an extremely low insertion loss of <1.0 dB, polarization-dependent loss of <1.0 dB, and interchannel imbalance of <0.5 dB, suppressing unwanted wavelength and polarization crosstalk from neighboring channels of <-20 dB at each peak transmission channel grid.

Keywords

Acknowledgement

This work was supported by a grant from the Electronics and Telecommunications Research Institute (ETRI) funded by the ICT R&D program of MSIT/IITP [2019-0-00002, Development of Optical Cloud Networking Core Technology]. This work was supported by a research grant from the University of Suwon in 2022.

References

  1. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, "Wavelength division multiplexing based photonic integrated circuit on silicon-on-insulator platform," IEEE J. Sel. Top. Quantum Electron. 16, 23-32 (2010). https://doi.org/10.1109/JSTQE.2009.2033454
  2. J. C. Rosenberg, F. Horst, M. Khater, F. G. Anderson, R. Leidy, T. Barwicz, D. Gill, E. Kiewra, Y. Martin, J. S. Orcutt, A. D. Stricker, C. Whiting, K. McLean, B. Porth, C. Xiong, N. Feilchenfeld, K. Giewont, K. Nummy, B. J. Offrein, W. Haensch, and W. M. J. Green, "Monolithic silicon photonic WDM transceivers," in Proc. European Conference on Optical Communications (Gothenburg, Sweden, Sept. 17-21, 2017), pp. 1-3.
  3. H. Wang, J. Dai, H. Jia, S. Shao, X. Fu, L. Zhang, and L. Yang, "Polarization-independent tunable optical filter with variable bandwidth based on silicon-on-insulator waveguides," Nano-photonics 7, 1469-1477 (2018).
  4. R. R. Kumar and H. K. Tsang, "High-extinction CROW filters for scalable quantum photonics," Opt. Lett. 46, 134-137 (2021). https://doi.org/10.1364/ol.409784
  5. F. Morichetti, M. Milanizadeh, M. Petrini, F. Zanetto, G. Ferrari, D. O. de Aguiar, E. Guglielmi, M. Sampietro, and A. Melloni, "Polarization-transparent silicon photonic add-drop multiplexer with wideband hitless tuneability," Nat. Commun. 12, 4324 (2021).
  6. F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, "Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing," Opt. Express 21, 11652-11658 (2013). https://doi.org/10.1364/OE.21.011652
  7. S.-H. Jeong and Y. Tanaka, "Silicon-wire optical demultiplexers based on multistage delayed Mach-Zehnder interferometers for higher production yield," Appl. Opt. 57, 6474-6480 (2018). https://doi.org/10.1364/AO.57.006474
  8. J. C. Mikkelsen, A. Bois, T. Lorello, D. Mahgerfteh. S. Menezo, and J. K. S. Poon, "Polarization-insensitive silicon nitride Mach-Zehnder lattice wavelength demultiplexers for CWDM in the O-band," Opt. Express 26, 30076-30084 (2018). https://doi.org/10.1364/oe.26.030076
  9. H. Xu and Y. Shi, "Flat-top CWDM (De)Multiplexer based on MZI with bent directional couplers," IEEE Photonics Technol. Lett. 30, 169-172 (2018). https://doi.org/10.1109/LPT.2017.2779489
  10. H. Xu, D. Dai, and Y. Shi, "Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers," Opt. Express 29, 20617-20631 (2021). https://doi.org/10.1364/OE.428352
  11. T. H. Yen and Y. J. Hung, "Fabrication tolerant CWDM (de) multiplexer based on cascaded Mach-Zehnder interferometers on silicon-on-insulator," J. Lightwave Technol. 39, 146-153 (2021). https://doi.org/10.1109/JLT.2020.3026314
  12. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, and W. Bogaerts, "Optimized silicon AWG with flattened spectral response using an MMI aperture," J. Lightwave Technol. 31, 87-93 (2013). https://doi.org/10.1109/JLT.2012.2231399
  13. H. Okayama, Y. Onawa, D. Shimura, H. Takahashi, H. Yaegashi, and H. Sasaki, "Low loss 100 GHz spacing arrayed-waveguide grating using minimal terrace at slab-array interface," Electron Lett. 52,1545-1546 (2016). https://doi.org/10.1049/el.2016.2488
  14. M. Gehl, D. Trotter, A. Starbuck, A. Pomerene, A. L. Lentine, and C. Derose, "Active phase correction of high resolution of silicon photonic arrayed waveguide gratings," Opt. Express 25, 6320-6334 (2017). https://doi.org/10.1364/OE.25.006320
  15. S. Guerber, C. A. Alonso-Ramos, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, F. Boeuf, and L. Vivien, "Polarization independent and temperature tolerant AWG based on a silicon nitride platform," Opt. Lett. 45, 6559- 6562 (2020). https://doi.org/10.1364/ol.411332
  16. H. Xu, L. Lie, and Y. Shi, "Polarization-insensitive four-channel coarse wavelength-division (de)multiplexer based on Mach-Zehnder interferometers with bent directional couplers and polarization rotators," Opt. Lett. 43, 1483-1486 (2018). https://doi.org/10.1364/OL.43.001483
  17. S.-H. Jeong, Y. Onawa, D. Shimura, H. Okayama, T. Aoki, H. Yaegashi, T. Horikawa, and T. Nakamura, "Polarization diversified 16λ demultiplexer based on silicon wire delayed interferometers and arrayed waveguide grating," J. Lightwave Technol. 38, 2680-2687 (2020). https://doi.org/10.1109/JLT.2020.2969240
  18. W. D. Sacher, T. Barwicz, B. J. F. Taylor, and J. K. S. Poon, "Polarization rotator-splitters in standard active silicon photonics platforms," Opt. Express 22, 3777-3786 (2014). https://doi.org/10.1364/OE.22.003777
  19. H. Xu and Y. Shi, "Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide," Opt. Express 25, 18485-18491 (2017). https://doi.org/10.1364/OE.25.018485
  20. S.-H. Jeong, "Theoretical verification of a silicon-wire flat-spectral-band wavelength filter based on multimode interference couplers with symmetric and asymmetric splitting ratios for the broadband operating range," Appl. Opt. 60, 9411-9418 (2021). https://doi.org/10.1364/AO.437694
  21. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, "Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion," Appl. Opt. 44, 7282-7286 (2005). https://doi.org/10.1364/AO.44.007282
  22. J. Kim, D. B. Adams, and C. K. Madsen, "Device-under-test Jones matrix extraction algorithm with device TE/TM reference frame," IEEE Photonics Technol. Lett. 24, 88-90 (2012). https://doi.org/10.1109/LPT.2011.2172788
  23. S.-H. Jeong, T. Horikawa, and T. Nakamura, "Phase behaviors for silicon-wire multistage delayed interferometric WDM filters across a whole 300-mm silicon-on-insulator wafer," J. Opt. Soc. Am. B 37, 1847-1856 (2020). https://doi.org/10.1364/JOSAB.385978
  24. G. P. Agrawal, "WDM system," in Lightwave Technology: Telecommunication Systems (John Wiley & Sons, Hoboken, New Jersey, 2005), Volume 2, Chapter 9, pp. 351-353.