초록
디지털 전환이 가속화되면서 금융 서비스 또한 비대면 서비스의 비중이 높아지고 있다. 최근 모바일 서비스에서 경쟁력을 확보하기 위해 사용자 경험이 대두되고, 사용자 경험을 향상하기 위한 분석 기법이 출현하고 있다. 정량적 평가에 사용되는 데이터 중 하나인 사용자 리뷰 데이터는 불필요한 정보가 다량 포함되어 있어 개선 방향을 도출해내는 데 많은 시간과 에너지가 소요된다. 따라서 본 연구에서는 코사인 유사도 알고리듬을 활용해 사용자 경험 계층을 기준으로 UX 분석 시스템을 개발하고 검증을 위해 국민은행, 우리은행, 카카오뱅크, 토스의 사용자 리뷰 데이터를 분석하는 것을 목표로 한다. 본 연구는 개발된 UX 분석 시스템이 사용자 리뷰 데이터의 분석을 통해 효과적으로 UX 분석이 가능한 시스템이라는 것을 증명하였다. 본 연구의 시스템은 빠르게 고객의 피드백을 반영해야 하는 애자일 조직에서 사용자 경험 계층별 개선 방안을 파악하는 데 용이하게 사용될 수 있을 것으로 기대된다.
As digital transformation accelerates, the proportion of non-face-to-face services in financial services is also increasing. Recently, user experience has emerged to secure competitiveness in mobile services, and analysis techniques to improve user experience have emerged. User review data, one of the data used for quantitative evaluation, contains a lot of unnecessary information, which is time-consuming to derive improvement directions. Therefore, this study aims to develop a UX analysis system based on the hierarchy of UX needs by using a cosine similarity algorithm and analyze user review data of Kookmin Bank, Woori Bank, Kakao Bank, and Toss for verification. This study proved that the developed UX analysis system is a system that can effectively analyze UX through the analysis of user review data. The system of this study is expected to be easily used to identify improvement plans for the hierarchy of UX needs in an agile organization that needs to quickly reflect customer feedback.