DOI QR코드

DOI QR Code

A Study of the Blocking and Ridge over the Western North Pacific in Winter and its Impact on Cold Surge on the Korean Peninsula

겨울철 북서 태평양에서 발생하는 고위도 블로킹과 중앙 태평양 기압능이 한반도 한파에 미치는 영향 연구

  • Keon-Hee Cho (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Eun-Hee Lee (Korea Institute of Atmospheric Prediction Systems (KIAPS)) ;
  • Baek-Min Kim (Division of Earth Environmental System Science, Pukyong National University)
  • 조건희 ((재)차세대수치예보모델개발사업단) ;
  • 이은희 ((재)차세대수치예보모델개발사업단) ;
  • 김백민 (부경대학교 지구환경시스템과학부)
  • Received : 2023.02.07
  • Accepted : 2023.02.23
  • Published : 2023.02.28

Abstract

Blocking refers to a class of weather phenomena appearing in the mid and high latitudes, whose characteristics are blocked airflow of persistence. Frequently found over the Pacific and Atlantic regions of the Northern Hemisphere, blocking affects severe weather in the surrounding areas with different mechanisms depending on the type of blocking patterns. Along with lots of studies about persistent weather extremes focusing on the specific types of blocking, a new categorization using Rossby wave breaking has emerged. This study aims to apply this concept to the classification of blockings over the Pacific and examine how different wave breakings specify the associated cold weather in the Korean peninsula. At the same time, we investigate a strongly developing ridge around the Pacific by designing a new detection algorithm, where a reversal method is modified to distinguish ridge-type blocking patterns. As result, Kamchatka blocking (KB) and strong ridge over the Central Pacific are observed the most frequently during 20 years (2001~2020) of the studied period, and anomalous low pressures with cold air over the Korean Peninsula are accompanied by blocking events. When it considers the Rossby wave breaking, cyclonic wave-breaking is dominant in KB, which generates low-pressure anomalies over the Korean Peninsula. However, KB with anticyclone wave breaking appears with the high-pressure anomalies over the Korean Peninsula and it generates the warm temperature anomaly. Lastly, the low-pressure anomalies are also generated by the strong ridge over the Central Pacific, which persists for approximately three days and give a significant impact on cold surge on the Korean Peninsula.

Keywords

Acknowledgement

본 연구는 기상청 출연사업인 (재)차세대수치예보모델개발사업단의 가변격자체계 기반 통합형수치예보모델 개발(KMA2020-02212)의 지원을 받아 수행되었습니다.

References

  1. Bae, J.-H., and K.-H. Min, 2016: Analysis of the February 2014 East coast heavy snowfall case due to blocking. Atmosphere, 26, 227-241, doi:10.14191/Atmos.2016.26.2.227 (in Korean with English abstract).
  2. Barriopedro, D., R. Garcia-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to general circulation models. Part I: A novel detection scheme. Climate Dyn, 35, 1373-1391, doi:10.1007/s00382-010-0767-5.
  3. D'Andrea, F., and Coauthors, 1998: Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979~1988. Climate Dyn, 14, 385-407, doi:10.1007/S003820050230.
  4. Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 6496-6509, doi:10.1175/JCLI-D-12-00032.1.
  5. Dunn-Sigouin, E., S.-W. Son, and H. Lin, 2013: Evaluation of Northern Hemisphere blocking climatology in the global environment multiscale model. Mon. Wea. Rev., 141, 707-727, doi:10.1175/MWR-D-12-00134.1.
  6. Galarneau, T. J. Jr., T. M. Hamill, R. M. Dole, and J. Perlwitz, 2012: A multiscale analysis of the extreme weather events over western Russia and northern Pakistan during July 2010. Mon. Wea. Rev., 140, 1639-1664, doi:10.1175/MWR-D-11-00191.1.
  7. Hamill, T. M., and G. N. Kiladis, 2014: Skill of the MJO and Northern Hemisphere blocking in GEFS mediumrange reforecasts. Mon. Wea. Rev., 142, 868-885, doi:10.1175/MWR-D-13-00199.1.
  8. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, doi:10.1002/qj.3803.
  9. Hwang, J., S.-W. Son, P. Martineau, and D. Barriopedro, 2022: Impact of winter blocking on surface air temperature in East Asia: Ural versus Okhotsk blocking. Climate Dyn, 59, 2197-2212, doi:10.1007/s00382-022-06204-5.
  10. Kim, S.-H., H.-J. Sung, S.-J. Kim, E.-H. Baek, J.-Y. Moon, and B.-M. Kim, 2022: Contribution of Ural and Kamchatka blockings to the amplified warm arctic-cold eurasia pattern under arctic sea ice loss and eurasian cooling. J. Climate, 35, 4071-4083, doi:10.1175/JCLID-21-0635.1.
  11. Kunz, T., K. Fraedrich, and F. Lunkeit, 2009: Impact of synoptic-scale wave breaking on the NAO and its connection with the stratosphere in ERA-40. J. Climate, 22, 5464-5480, doi:10.1175/2009JCLI2750.1.
  12. Lee, H.-Y., J. Kim, I.-G. Park, H. Kang, and H. Ryu, 2018: Local enhancement mechanism of cold surges over the Korean Peninsula. Atmosphere, 28, 383-392, doi: 10.14191/Atmos.2018.28.4.383 (in Korean with English abstract).
  13. Masato, G., B. J. Hoskins, and T. Woollings, 2013: Wavebreaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. J. Climate, 26, 4535-4549, doi:10.1175/JCLI-D-12-00240.1.
  14. Park, T.-W., C.-H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn, 43, 753-770, doi:10.1007/s00382-013-1817-6.
  15. Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. Tellus, 2, 275-301, doi:10.3402/tellusa.v2i4.8603.
  16. Sausen, R., W. Koenig, and F. Sielmann, 1995: Analysis of blocking events from observations and ECHAM model simulations. Tellus A, 47, 421-438, doi:10.3402/tellusa.v47i4.11526.
  17. Sousa, P. M., D. Barriopedro, R. Garcia-Herrera, T. Woollings, and R. M. Trigo, 2021: A new combined detection algorithm for blocking and subtropical ridges. J. Climate, 34, 7735-7758, doi:10.1175/JCLI-D-20-0658.1.
  18. Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343-365, doi:10.3402/tellusa.v42i3.11882.
  19. Treidl, R. A., E. C. Birch, and P. Sajecki, 1981: Blocking action in the northern hemisphere: A climatological study. Atmos. Ocean, 19, 1-23, doi:10.1080/07055900.1981.9649096.
  20. White, W. B., and N. E. Clark, 1975: On the development of blocking ridge activity over the central North Pacific. J. Atmos. Sci., 32, 489-502, doi:10.1175/1520-0469 (1975)032<0489:OTDOBR>2.0.CO;2.
  21. Woollings, T., D. Barriopedro, J. Methven, S.-W. Son, O. Martius, B. Harvey, J. Sillmann, A. R. Lupo, and S. Seneviratne, 2018: Blocking and its response to climate change. Current Climate Change Reports, 4, 287-300, doi:10.1007/s40641-018-0108-z.
  22. Yoo, Y.-E., S.-W. Son, H.-S. KIM, and J.-H. Jeong, 2015: Synoptic characteristics of cold days over South Korea and their relationship with large-scale climate variability. Atmosphere, 25, 435-447, doi:10.14191/Atmos.2015.25.3.435 (in Korean with English abstract).