참고문헌
- K. Kim, Y. Lee, Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system, Nucl. Eng. Technol. 53 (2021) 2341-2347, https://doi.org/10.1016/j.net.2021.01.011.
- P. Ritt, Recent developments in SPECT/CT, Semin. Nucl. Med. 52 (2022) 276-285, https://doi.org/10.1053/j.semnuclmed.2022.01.004.
- L. Imbert, P.-Y. Marie, CZT cameras: a technological jump for myocardial perfusion SPECT, J. Nucl. Cardiol. 23 (2016) 894-896, https://doi.org/10.1007/s12350-015-0216-2.
- D. Wu, Z. Zhang, R. Ma, F. Guo, L. Wang, W. Fang, Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure, J. Nucl. Cardiol. 26 (2019) 443-452, https://doi.org/10.1007/s12350-017-0952-6.
- Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies, J. Kor. Phys. Soc. 62 (2013) 1317-1322, https://doi.org/10.3938/jkps.62.1317.
- J.V. Hoffmann, J.P. Janssen, T. Kanno, T. Shibutani, M. Onoguchi, C. Lapa, J.-P. Grunz, A.K. Buck, T. Higuchi, Performance evaluation of fifth-generation ultrahigh-resolution SPECT system with two stationary detectors and multi-pinhole imaging, EJNMMI. Phys. 7 (2020) 64, https://doi.org/10.1186/s40658-020-00335-6.
- T. Yamamoto, J.M. Kim, K.S. Lee, T. Takayama, T. Kitahara, Development of a new cardiac and torso phantom for verifying the accuracy of myocardial perfusion SPECT, Journal of Radiological Science and Technology 31 (2008) 389-400.
- M. Lyra, Filtering in SPECT image reconstruction, Int. J. Biomed. Imag. 2011 (2011), 693795, https://doi.org/10.1155/2011/693795.
- A.M. Katua, A.O. Ankrah, M. Vorster, A. van Gelder, M.M. Sathekge, Optimization of ordered subset expectation maximization reconstruction for reducing urinary bladder artifacts in single-photon emission computed tomography imaging, World J. Nucl. Med. 10 (2011) 3-8, https://doi.org/10.4103/1450-1147.82108.
- O.H. Winz, S. Hellwig, M. Mix, W.A. Weber, F.M. Mottaghy, W.M. Schafer, P. T. Meyer, Image quality and data quantification in dopamine transporter SPECT: advantage of 3-dimensional OSEM reconstruction? Clin. Nucl. Med. 37 (2012) 866-871, https://doi.org/10.1097/RLU.0b013e318251e1b3.
- G.L. Zeng, A filtered backprojection algorithm with characteristics of the iterative landweber algorithm, Med. Phys. 39 (2012) 603-607, https://doi.org/10.1118/1.3673956.
- K. Van Laere, M. Koole, I. Lemahieu, R. Dierckx, Image filtering in single-photon emission computed tomography: principels and applications, Comput. Med. Imag. Graph. 25 (2001) 127-133, https://doi.org/10.1016/S0895-6111(00)00063-X.
- Z. Wang, A.C. Bovik, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13 (2004) 600-612, https://doi.org/10.1109/TIP.2003.819861.
- W. Xue, L. Zhang, X. Mou, A.C. Bovik, Gradient magnitude similarity deviation: a highly efficient perceptual image quality index, IEEE Trans. Image Process. 23 (2014) 684-695, https://doi.org/10.1109/TIP.2013.2293423.
- J. Dame, A. Chandra, A. Jones, N. Berend, J. Magnussen, G. King, Airway dimensions measured from microcomputed tomography and high-resolution computed tomography, Eur. Respir. J. 28 (2006) 712-720, https://doi.org/10.1183/09031936.06.00012405.
- K. Choi, J. Wang, L. Zhu, T.S. Suh, S. Boyd, L. Xing, Compressed sensing based cone-beam computed tomography reconstruction with a first-order method, Med. Phys. 37 (2004) 5113-5125, https://doi.org/10.1118/1.3481510.
- M.M.A. Dietze, W. Branderhorst, B. Kunnen, M.A. Viergever, H.W.A.M. de Jong, Accelerated SPECT image reconstruction with FBP and an image enhancement convolutional neural network, EJNMMI. Phys. 6 (2019) 14, https://doi.org/10.1186/s40658-019-0252-0.
- A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B (Methodol.) 39 (1977) 1-38, https://doi.org/10.1111/j.2517-6161.1977.tb01600.x.
- L.A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imag. 1 (1982) 113-122, https://doi.org/10.1109/TMI.1982.4307558.
- C. Kamphuis, F.J. Beekman, Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm, IEEE Trans. Med. Imag. 17 (1998) 1101-1105, https://doi.org/10.1109/42.746730.
- H. Erdogan, J.A. Fessler, Ordered subsets algorithms for transmission tomography, Phys. Med. Biol. 44 (1999) 2835, https://doi.org/10.1088/0031-9155/44/11/311.
- F.J. Beekman, C. Kamphuis, Ordered subset reconstruction for x-ray CT, Phys. Med. Biol. 46 (2001) 1835, https://doi.org/10.1088/0031-9155/46/7/307.
- T.F. Chan, L.A. Vese, Active contours without edges, IEEE Trans. Image Process. 10 (2001) 266-277, https://doi.org/10.1109/83.902291.
- R.T. Whitaker, A level-set approach to 3D reconstruction from range data, Int. J. Comput. Vis. 29 (1998) 203-231, https://doi.org/10.1023/A:1008036829907.
- P. Soille, Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, ISBN 978-3-642-07696-1, pp. 173-174.
- C. Louchet, L. Mosian, Total variation as a local filter, SIAM J. Imag. Sci. 4 (2011) 651-6940, https://doi.org/10.1137/100785855.
- M.-H. Lee, C.-S. Yun, K. Kim, Y. Lee, For the Alzheimer Disease Neuroimaging Initative, Image restoration algorithm incorporating methods to remove noise and blurring from positron emission tomography imaging for Alzheimer's disease diagnosis, Phys. Med. 103 (2022) 181-189, https://doi.org/10.1016/j.ejmp.2022.10.016.
- S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, T.Q. Nguyen, An augmented Lagrangian method for video restoration, IEEE Trans. Image Process. 20 (2011) 3097-3111, https://doi.org/10.1109/ICASSP.2011.5946560.
- J.H. Lee, Y.R. Kim, G.M. Lee, J.H. Ryu, E.Y. Cho, Y.H. Lee, K.-H. Yoon, Coefficient of variation on Gd-EOB MR imaging: correlation with the presence of early-stage hepatocellular carcinoma in patients with chronic hepatitis B, Eur. J. Radiol. 102 (2018) 95-101, https://doi.org/10.1016/j.ejrad.2018.02.032.
- M. Koutalonis, H. Delis, G. Spyrou, L. Costaridou, G. Tzanakos, G. Panayiotakis, Contrast-to-noise ratio in magnification mammography: a Monte Carlo study, Phys. Med. Biol. 52 (2007) 3185-3199, https://doi.org/10.1088/0031-9155/52/11/017.
- F.H.P. van Velden, R.W. Kloet, B.N.M. van Berckel, S.P.A. Wolfensberger, A. A. Lammertsma, R. Boellaard, Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods, Phys. Med. Biol. 53 (2008) 3217-3230, https://doi.org/10.1088/0031-9155/53/12/010.
- G.A. Kastis, A. Gaitanis, Y. Fernandez, G. Kontaxakis, A.S. Fokas, Evaluation of a spline reconstruction technique: comparison with FBP, MLEM and OSEM, IEEE Nuclear Science Symposuim & Medical Imaging Conference (2011), https://doi.org/10.1109/NSSMIC.2010.5874412.
- A. Sowa-Staszczak, W. Lenda-Tracz, M. Tomaszuk, B. Gtowa, A. HubalewskaDydejczyk, Optimization of image reconstruction method for SPECT studies performed using [99mTc-EDDA/HYNIC] octreotate in patients with neuroendocrine tumors, Nucl. Med. Rev. Cent. E Eur. 16 (2013) 9-16, https://doi.org/10.5603/NMR.2012.0002.